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INVARIANT THEORY, TENSORS AND GROUP CHARACTERS
By D. E. LITTLEWOOD, University College, Swansea

(Communicated by H. W. Turnbull—Received 14 January 1943)

In Part I is developed the theory of the #ensor as a device for the construction of concomitants.
This part includes the specific separation of a complete cogredient tensor of rank  into simple tensors,
with a formula indicating the corresponding separation of a mixed tensor; also the corresponding
theory in tensors to the Clebsch theory of algebraic forms, and a compact proof of the fundamental
theorem that all concomitants under the full linear group can be obtained by the multiplication and
contraction of tensors. The general equivalence is demonstrated, so far as elementary applications
are concerned, of the method of tensors with the classical symbolic method of invariant theory.

The first part forms a foundation for the principal theory of the paper which is developed in
Part IT. This primarily consists of an analysis of the properties of S-functions which provides methods
for predicting the exact number of linearly independent concomitants of each type, of a given set of
ground forms. Complementary to this, a method of substitutional analysis based on the tableaux
which must be constructed in obtaining a product of S-functions, enables the specific concomitants
of each type to be written down.

Part III consists of applications to the classical problems of invariant theory. For ternary per-
petuants a generating function is obtained which is not only simpler than that given by Young, but
is also more general, in so far as it indicates, as well as the covariants, also the mixed concomitants.
Extension is made to any number of variables. The complete sets of concomitants, up to degree 5 or
6 in the coeflicients, are obtained for the cubic, quartic and quadratic complex in any number of
variables. Alternating concomitant types are described and enumerated. A theorem of conjugates is proved
which associates the concomitants of one ground form with the concomitants of a ground form of a
different type, namely, that which corresponds to the conjugate partition.

Some indication is made of the extension of this theory to invariants under restricted groups of
transformations, e.g. the orthogonal group, but the full development of this extended theory is to
be the subject of another paper.

PART I. GENERAL THEORY

INTRODUCTION

In algebraic geometry co-ordinates represent a relation between a point or some other
geometric entity, and a certain frame of reference. Equations thus represent relations
between geometric configurations and this frame of reference. Sinceitisusually the geometric
configuration rather than the frame of reference in which we are interested, it is of con-
siderable advantage to be able to ‘eliminate’ the frame of reference from these equations.

Given a set of ground forms which correspond to known geometric configurations, it is
found that certain functions of the coefficients of these ground forms, and of the variables,
are unchanged in form when a transformation is made from one frame of reference to
another. These are the concomitants of the given set of ground forms. To work with these
concomitants is equivalent to the ‘elimination’ of the frame of reference. Theoretically at
least, all properties of the geometric configuration as distinct from the frame of reference,
are expressible in terms of these concomitants.

The advantages of such a method of investigation are so obvious, that it is not surprising
that, during the last half of the nineteenth century and at the beginning of this century, a
very considerable volume of study was made on these lines by Cayley, Sylvester, Clebsch,
Gordan, Hilbert and others, which is described under the general title of Invariant Theory.
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306 D. E. LITTLEWOOD ON

Of recent years interest in invariant theory has flagged somewhat, and perhaps, setting
aside the vagaries of fashion, one reason for this has been the introduction of tensors.

The tensor is, in essence, an algebraic device for the construction of the concomitants of
a given set of ground forms. The tensor notation is simple, the rules for the construction of
concomitants are easily mastered, and the device thus presents the superficial advantages
whilst avoiding the difficulties of theory and technique, of classical invariant theory.

The most effective work in classical invariant theory is based on the symbolic method due
to Aronhold. It will be shown in this paper that, in its elementary application, the uses of
tensors is mathematically equivalent to the use of Aronhold symbols. By either method an
unlimited variety of expressions may be written down which are guaranteed to have the
property of concomitants. There is no corresponding guarantee, however, except in the
detailed evaluation, that any given expression will not prove to be identically equal to zero,
or that two different expressions, when evaluated, will not prove to be one and the same.

The construction of the linearly independent or algebraically independent concomitants
by either method requires the development of a special technique, and a large body of the
work in classical invariant theory is concerned with this technique. Little or no corre-
sponding technique has previously been developed for tensors. Indeed, it has not pre-
viously been proved that every concomitant can be expressed in terms of tensors.

Although the method of tensors is equivalent to the symbolic method in its elementary
application, because of the difference in form, the appropriate technique develops quite
differently. The manipulation of the symbols has called forth a technique based on the
processes of ordinary algebra, but the manipulation of the suffixes of the tensors finds a
more fitting technique in group theory and in the Quantitative Substitutional Analysis as
developed by Young.*

It is the purpose of this paper to co-ordinate these two methods, the quantitative sub-
stitutional methods of Young, and a new method mentioned in a previous paper (Littlewood
1936 6) involving a so-called ‘new multiplication of S-functions’. After the proof of the
fundamental theorem that all concomitants can be obtained by contraction from the basic
tensors, tensor variables and certain fundamental tensors, the equivalence of the method
with the use of Aronhold symbols is indicated. Part I concludes with some indication of the
modifications necessary when the group of transformations is a restricted group such as the
orthogonal group.

In Part II group representational methods are developed based on the ‘new multiplica-
tion of S-functions’ and on substitutional analysis. In Part III the theory is described by
applications to the classical problems of invariant theory.

DERIVED TRANSFORMATIONS
Suppose that a set of 7 variables x!, 42, ..., x" are transformed by a linear substitution
, x' = XEixd,
It should be noted that the numbers 1, 2, ..., n, and the letters 7, j are upper suffixes such

as are used in tensor calculus, and not indices.

* Nevertheless, historically, it was from the symbolic method that Young discovered his Quantitative
Substitutional Analysis (1go1~35).
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INVARIANT THEORY, TENSORS AND GROUP CHARACTERS 307

It is convenient to be able to express the linear transformation in matrix form. Forming
the variables into column vectors X = [x*], X’ = [x"*] and putting 4 = [£], then

X =AX.

In writing matrices the letters s and ¢ are reserved to denote the indices of the row and
column respectively of a typical element. The sign ~ placed above a matrix indicates the
transposition of rows and columns. Thus X is the row vector [X*], and 4 = [£]. The sign
is usually placed above a letter which denotes a row vector.

Suppose that while X is undergoing this transformation the bilinear form

UX = [u] [x] = Zu x"
remains- invariant. This implies that the variables #, must undergo the reciprocal trans-
formation / - / j
U =A47'U, or u;=Zpiu,

where [7]1[&]1 =1,
the unit matrix.

More generally it may be supposed that the set of variables %1, ..., * undergo the given
transformation, and that v, v,, ..., vy is another set of variables with N not necessarily equal
to n. Then if f(x?,v;) is some function of both sets of variables, it may happen that the form

J(x%,v;) can be kept invariant if and only if the variables are subjected simultaneously to a
transformation which is uniquely determined by the transformation of the xi. Then the
v;’s will be called a set of derived variables, which are subjected to a derived transformation. The
matrix of this transformation will be called a derived matrix.

Thus if the quadratic form Za;;x°x/ is kept invariant, then the coefficients a; undergo a
derived transformation. If a polynomial of degree p, 2a; ;,..., x™ ... x* is kept invariant, the
matrix of transformation of the coefficients is usually called the pth induced matrix of 4-1.
Thus induced matrices are special cases of derived matrices.

The possibility of deriving a matrix in this way is delegated to derived variables. Thus if
¥, 2% u,,v,, ... are sets of derived variables, then the invariance of a function

Sy, 2k a0, .., w,)

may imply a unique transformation of the last set, w,, and this will be a derived transforma-
tion.

Thus derivation is a property of a function (or functions) f which becomes an absolute
invariant when the appropriate transformation is made on the introduced set of variables.

Let A be the matrix of transformation of the x%, and let 7°(4) denote any derived matrix.
As a result of two consecutive transformations of the x* with matrices 4 and B respectively,
a transformation is obtained with matrix BA4. Corresponding to BA the derived matrix
T(BA) could be obtained as the product of the derived matrices 7(B) 7(4) and thus

T(BA) = T(B) T(A).

This is the equation used by Schur (1go1) in his famous inaugural dissertation to define
an invariant matrix. Schur makes the assumption that the elements of the matrix 7°(A4) are
polynomials in the elements of 4. Making a similar assumption, it will follow that a derived
matrix is an invariant matrix according to Schur’s definition.

37-2
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308 D. E. LITTLEWOOD ON

This restriction is, however, too stringent for the present purpose. It would exclude even
the reciprocal matrix. It will be assumed instead that the elements of 7(4) are rational
functions of the elements of 4.

Now assume that the transformation is non-singular, so that the determinant | 4| is not
zero. Apart from this the elements of 4 are in no way restricted and may take values over
the whole range of complex numbers. Now if 4 is a finite matrix 7(4) cannot have infinite
elements. But if a rational element of 77(4) has in its denominator any factor which is not
a power of | 4|, 4 could be chosen so that this factor was zero, and 7(4) would have an
infinite element. It follows that the only denominators that can occur in 7°(4) are powers
of the determinant | 4 |. ‘

Itis thus seen that the only modification of Schur’s theory which follows from this general-
ization is the introduction of possible negative powers of the determinant of the original
matrix.

Hence a derived matrix is either an invariant matrix, or an invariant matrix multiplied
by a negative power of the determinant of the transformation.

Definition is now given to special sets of derived variables called tensors. Since it will be
shown that a tensor can be formed corresponding to each of Schur’s invariant matrices, it
will follow that every set of derived matrices can be represented as a tensor.

COGREDIENT AND CONTRAGREDIENT VARIABLES

There is a slight difference in the phraseology of invariant theory and tensor calculus.
In invariant theory, two sets of variables are said to be cogredient if they undergo the same
linear transformation, and contragredient if they undergo reciprocal transformations. The
words cogredient and contragredient have a relative meaning. In tensor calculus the meaning
of the words is made absolute by comparing all sets of variables with one given set. That
this absolute meaning is sometimes assumed in invariant theory is apparent from the words
covariant and contravariant, when the comparison is assumed to be with the original
ground form.

Making use of upper and lower suffixes it is convenient to adopt here the conventions of
tensor calculus. The set of variables x as the basis for comparison is not used, but a set
u; to which the variables x? are contragradient.

Assuming that the variables x?, u; are subject to the restriction that the form Zxu; is kept
invariant, the variables «, will be called cogredient and the variables x¢ contragredient. Lower
suffixes will be used for cogredient and upper suffixes for contragredient sets of variables,
or tensors.

An algebraic form will be called a covariant or contravariant according as the set of coef-
ficients (not the variables) is transformed as a cogredient or contragredient tensor. Since the
coefficients transform reciprocally to the variables a covariant will be of the form f{(a, %),
and a contravariant f(a,u;). More generally if several sets of contragredient variables are
involved, e.g. f(a, x,y/, ...), the form is called covariantive; and if several sets of cogredient
variables, e.g. f(a, u;v;,...), it is called contravariantive. This conforms to usual practice
in invariant theory, and the variations thus introduced in the accepted terminology of
invariant theory are as slight as possible.
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SIMPLE AND COMPLEX SETS OF DERIVED VARIABLES

Let y; (1<i¢<<m) represent a set of derived variables. Then if z; (1<i<<{m) is a set of
variables obtained from the y; by a fixed linear substitution (i.e. one that is independent of
the group of transformations), the z; also form a set of derived variables. This is easily
seen if, in the invariant function which defines the y; as derived variables, for each y; is
substituted the corresponding linear function of the z,. The two sets of variables are said
to be equivalent.

If a set of derived variables separates into two sets, the variables of each set being trans-
formed amongst themselves only, by the derived transformation, the complete set is said to
be complex. A set which is equivalent to a complex set is also said to be complex. A set which
is not complex is simple. Schur uses the words reducible and irreducible (reduktibel, irreduk-
tibel) in this sense, but since these words have an entirely different significance in invariant
theory, the words complex and simple are preferred.

The expression of a complex set of derived variables as a sum of simple sets thus follows
exactly Schur’s reduction of the reducible invariant matrix into a direct sum of irreducible
invariant matrices.

A simple set of derived variables is a set such that the matrix of transformation is an
irreducible invariant matrix. ‘

TENSORS

If xfy), xfy), ..., x{, represent g sets each of n contragredient variables, and U, u®, ..., up
represent p sets of cogredient variables, then a set of n#*¢ derived variables can be defined by
holding invariant the form

Sy ooty MDD
The suffixes enclosed in brackets are distinguishing marks only, and are not subject to the
conventions associated with the tensor upper and lower suffixes.

Such a set of n?*¢ variables Aii % is called a complete tensor of rank (p+q).

If the cogredient variables are subjected to the transformation

then also x = L

By comparing the invariant form with its form after transformation the following equation
gives the manner in which a tensor transforms:

T bl Mpit’ i £j o, Adveei
A fri =2l gl € G Al

the summation being with respect to all repeated suffixes.

This equation giving the manner of transformation may be taken as an alternative
definition of a tensor.

Two tensors are said to be equivalent if they are equivalent sets of derived variables. A
tensor is said to be complex or simple according as it is a complex or simple set of derived
variables. A complete tensor of rank greater than one is in general complex. The n#+te
linearly independent terms of a complete tensor of rank (p+¢) may thus have a subset of
terms which forms a set of derived variables. Such a subset is called a tensor of rank (p+¢).
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310 D. E. LITTLEWOOD ON

If a tensor is complex and separates into two parts, one of the parts (simple or complex)
will be called a subtensor.

A complete tensor of rank (p+-¢) is thus expressible as a sum of simple tensors of rank
(p+q). Thus the complete cogredient tensor of rank 2, 4, is a sum of two simple tensors
of orders respectively $n(n+-1) and $n(n—1).

If By = 3(dy+4;), Gy = §(d;—45),
then AZ.J. = BZ.J. + Cz;
The tensor B;; is called a symmetric tensor and satisfies
Bij = Bji:
while Cj; is called antisymmetric and satisfies
Cij = Cji'
Later it is shown that a complete cogredient tensor of rank 3 has four simple components.
Put Aijk = Bijk + Cz‘jk + Dijk>
where 6B = Ajj+ At A+ A+ Ayji A
GCij - Az’jk“]“Ajki“l‘Akij’“Aikj—Aka‘*Aﬁm

3Dz’jk = 2Aijk——Ajki“Akij°

Of these B, is a symmetric tensor of order §n(n+1) (n+2), and Cjj; is an antisymmetric
tensor of order §n(n—1) (n—2). The tensor D, is not simple, but is equivalent to two simple
tensors. The separation into two subtensors can be made in an infinity of ways. Each simple
subtensor of D,;, has jn(n*—1) terms.

The simple tensors can be classified according to the matrix of transformation. This
classification is straightforward in the case of cogredient tensors and follows Schur’s theory
of invariant matrices (Schur 1901 ; see also Littlewood 1940, chapter x).

The spur of a matrix [a] is defined as the sum of the diagonal elements Xa;. As will be
seen from the equation for the method of transformation of a tensor, the matrix of trans-
formation for the complete cogredient tensor of rank 7 is equivalent to the direct product
of r matrices each identical with the original matrix. Thus the spur of the matrix of trans-
formation of the complete cogredient tensor of rank r is the rth power of the spur of the
original matrix.

If a,, h, denote symmetric functions of the latent roots of the original matrix, and
{}={A,,...,4,} denotes an S-function of these latent roots, then corresponding to each
partition (1) of 7 into not more than z parts, there is a Schur invariant matrix of which the
elements are of degree r in the elements of the original matrix. The spur of this invariant
matrix is the S-function {1} of the latent roots (Schur 1gor; Littlewood 1940).

Hence in order to discover the manner in which the complete cogredient tensor of rank
r separates into simple tensors, we have only to express its spur /] as a sum of S-functions.
This can be accomplished by the known formula (Littlewood 1940)

W = 87 = 2y {a},

where y§V is the characteristic of the identical element of the symmetric group of order 7!.
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Thus for » = 3 we have
h3 = {3} +2{21}+{1%},

which equation conforms with, and lies behind, the results of an example already given.

The $-function {r} = 4,, corresponding to a partition into one part only, is the spur of the
rth induced matrix and corresponds to the symmetric tensor. The S-function {17} = a, is
the spur of the 7th compound matrix, and corresponds to the antisymmetric tensor.

THE SEPARATION OF A COMPLETE COGREDIENT TENSOR

From a tensor of rank 7, 7! equivalent tensors are obtained by writing the suffixes in a
different order. Operators are dealt with which permute the suffixes and form linear com-
binations of the tensors with permuted suffixes. These operators are as used by Young in
his quantitative substitutional analysis, although he did not operate upon tensors. The
algebra of these operators is the Frobenius algebra of the symmetric group of order 7!
(Littlewood 1940).

A tensor which is equivalent to a given tensor, or to a subtensor thereof, may be obtained from it by
operating upon it with a substitutional operator which permutes the suffixes.

For simplicity this theorem will be proved for a tensor of rank 4, but the manner of proof
is quite general and in no way depends on the rank.

Let 4,,,, be a tensor, and let B, ,; be either equivalent to it or to a subtensor.

pars 'bars
Suppose that Bypye = ZKETTS Ay

The symbols K57 represent numerical coefficients, the suffixes in the first instance being

regarded as distinguishing marks. Nevertheless, because of the manner of transformation

of the tensors 4,,,, By, it is clear that the quantities K227 will transform like a tensor of

rank (4-+4). At the same time each coefficient K547 will be an invariant, unaltered by the

transformation. Thus a series of linear relations between these coefficients is obtained.
When the basic cogredient variables are subjected to the transformation

7 !/ ! !’
Uy = Ajuy, Uy = Aglty,  uy = Agu, uy = Ayuy,

then B, s = 4,4, A B Aprs = L, A, 4,4, 4

bars q " rt s pgrss pqrs qrtstpgrss
‘qr's 'qgr's’ 1—1)—-1)y—1)-—1
and thus KEars = D, A A A KELTS A 00 A0

Hence for any non-zero coefficient K547 the upper suffixes (#',¢',7',s") must represent
a permutation of the lower suffixes (p, ¢,7,s).

Itis sufficient to consider B, q,. This must be expressible in terms of the twenty-four terms
obtained from A4,,;, by permuting the suffixes.

If §; denotes a permutational operator which permutes the suffixes of a tensor, and K (S,

is a numerical coefficient, then
31234 = ZK(SZ) 'SiA1234'

Now consider the transformation
I q
w, = X&lu,.
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312 D. E. LITTLEWOOD ON
Making the corresponding transformations for the tensors Bj,3, and 47,5, then, since
1234 = 2K(S3) S5 A1g34
SEEESE Byre = ZK(S) - SEVEVEE Ay
and picking out the coeflicient of £ £4£5£;, it follows that
B, = 2K(S) .54,

qrs grs*

This proof is not invalidated if the rank exceeds the number of variables, for one may
postulate new variables and subsequently equate them to zero.

It is clear that the simple subtensors of 4, will be obtained by taking the substitutional
expression XK (S,) S, to be an irreducible idempotent of the Frobenius algebra.* For if¢; is such
an irreducible idempotent, and ¢ is any substitutional operator such that g¢;#0, then
another substitutional operator ¢ can be found such that yde, = ¢,. This implies that
€; 4,455 i €quivalent to, or to a subtensor of, g¢;4,,,; for any substitutional operator ¢ for
which ¢¢; 4, 0. For this to be the case ¢;4,,,, must be a simple tensor.

Suppose now that 4,,,, is a complete cogredient tensor of rank 4. To obtain those simple
components of 4,,,, which correspond to the partition (1), /" = x{" irreducible idempotents
of the Frobenius algebra are required. Such a set has been obtained by Young (1928; cf.
Littlewood 1940) as follows.

Suppose that the symbols ay, a,, ..., «,, are to be permuted. Corresponding to the partition
()= (A4 Ay, ...sA,) of m, form a tableau by placing 4, of the symbols in the first row, 4, in
the second row, and so on, with finally A, symbols in the pth row. The A, symbols in the ith
row must appear in the first i columns. The sum of the operations of the symmetric group of
permutations on the symbols of each row is then taken, and these substitutional expressions
are multiplied together to form a product P. The order of this multiplication is not significant
for, since the different substitutional expressions involve different symbols, they will be
commutative with one another.

The same procedure is then taken with the columns, but with this difference, a minus
sign is attached to each negative permutation. This product is denoted by N. Then

I gy,

>

Fw
or alternatively e} NP,

is a primitive idempotent of the Frobenius algebra.

Corresponding to the m! arrangements of the symbols in a tableau there are m! primitive
idempotents, but these are not all independent.

Young has shown that there are exactly /¥ tableaux which he calls standard in which the
order of the symbols in each row and in each column follows the natural order, or any
assigned order. These may form the basal units for a representation of the Frobenius algebra,
and may be used to separate the component parts of a tensor of rank .

* See Littlewood (1940), also cf. Weyl (1939), who describes these operators as ‘Young Symmetrizers’.
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Illustration is made with reference to the tensor of rank 4 corresponding to the partition
(2%). Examples of such a tensor are, in algebraic geometry, the coefficients of a quadratic
complex, and in Riemannian geometry, the Riemann-Christoffel tensor.

There are two standard tableaux, namely,

RN
ag ay)’ oy o)’
and the corresponding irreducible idempotents of the Frobenius algebra are
{1+ (@ ag)] [1+ (egoy) ] [1— (g @5)] [1— (@p4) ]}
and {[1+ (g @) ] [1+ (g 2g)] [1— (g @) ] [1— (54) ]}
Hence two simple tensors of type (22) are given by

1 2‘Bj)qrd; = qurs + qurs _l— Aj)qsr + qu)sr

- Arqps - Arﬁqs - Asq pr 4, par
+ Arsj)q _l— ,Arsqp _l— Axrpq + Asrqp

- A.bsrq - Aqsr.b o Almq - Aqrsp’
1 QCIMI"S = qurs + Arqps + Apsrq + Arqu
— qurs — Aqrps - Asprq - Asrpq
—l_ Aq[zsr + Aqrsp + Aqur + Asrqu

, - AP(]ST - Arqsp - Apsqr - Arsq[)'

The identical relations satisfied by the tensors B, and C, ,; may be found by obtaining

operators which, when multiplied on the right by the corresponding irreducible idempotent
of the Frobenius algebra, give zero.

The complete set of relations may be obtained from the substitutional operators corre-
sponding to each of the other partitions, i.e. (4), (31), (21?) and (1*), and say for B, ,, from
the operator used to define C,,,,. However, the relations as obtained by this method require
a great deal of simplification. It is more convenient to write down the corresponding left
factors of zero from an inspection of the Young tableau.

Thus the substitutional operator PN obtained from the tableau

Q3 0y

is considered. Since [1— (o)) [14+ (2y25)] = O,
then [1—(a;a,)] PN =0,
from which it follows that

qurs = Bq[)rs'

Similarly, considering the factor of zero [1— (a;a,)],

qurs = qusr'
Also [1— (2 3) (252y)] PN = 0,
and thus By =B,y

Vol. 239. A. 38
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314 D. E. LITTLEWOOD ON

Lastly, consider that subgroup of the symmetric group on the four symbols, which con-
tains the substitution 1+ (& ayas) + (2, 23a,). This subgroup corresponds to the compound
character (Littlewood 1940, chapter 1x) (4) 4 (31) 4 (211) + (1%), which does not include (22).
Hence the sum of the substitutions of this subgroup must form a left factor of zero and thus

Bygrs +Brps T Brygs = 0-

All the relations between the components of the tensor may be deduced from these four.

It may be noticed that these are not the usual formulae connecting the components of
the Riemann-Christoffel tensor, and it is clear that the tensor has been differently expressed.

The tensor could have been obtained in the more familiar form if the substitutional
operator PN had been replaced either by NP or by NPN. The substitution of NPN for PN
gives an equivalent subtensor of the complete tensor, but expresses it in a different form. The
substitution of NP for PN gives a slightly different subtensor which is a linear combination

of the tensors B,,,,; and C,,,.

In either case, using the tableau (Zl 23), and representing the tensor obtained by
2 %4
D,,,, because of the factors [1—(a;a,)] [1—(a3a4)] in N, [1+4(a;a,)] and [1+(asa,)] are

given as left factors of zero, and thus
D, =—D =D

bars qprs qpsr*®
Just as before D,,, =D, and D, +D, +D, =0.

These are the familiar relations between the components of the Riemann-Christoffel tensor.

It may be noticed that if ¢ is a substitutional operator which corresponds to a matrix of
rank 1 in the Frobenius algebra, then ¢ defines both a left and a right module, i.e. the linear
sets ¢z and z¢, where z is an arbitrary element of the algebra. Scalar multiples of the element
¢ are the only elements common to both modules, and thus the pair of modules define ¢
save for a numerical coefficient.

If qurs = ¢qurs’
then it is the right module only which determines the components of 4,,,; which go to form
the tensor B, ,.. The left module determines the manner of expression of these components

pars*
as a tensor.
The substitutional operators PN and NPN have the same right module, and the tensors

——D

bgsr

(PN) 4,,,; and (NPN) 4, are equivalent, but are differently expressed because of the
difference in the left module. The tensor (NP) 4,,,, contains different components, but the

left module of NP being the same as that of NPN, the manner of expression as a tensor is
similar to (NPN) 4,,,,.

GENERALIZATION OF THE DEFINITION OF A TENSOR

The classical definition of a concomitant (Turnbull 1928) does not require the absolute
invariance of the form under the group of transformations. Itis sufficient if, after transforma-
tion, the form is multiplied by a factor which is not zero, and is independent of the coef-
ficients and variables. It is proved that this factor must be of the form 4, where 4 is the
determinant of the transformation, and ¢ is a positive, zero or negative integer. Thus

S, %) = Af(a, x).
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The index 1 is called the weight of the concomitant. To make the sign of the weight conform
to current usage 4 must be the determinant of the transformation for cogredient variables.

In particular, an invariant for which such a factor 47 must be introduced is called a
relative invariant, in contrast with an absolute invariant for which ¢ = 0.

Similarly, the definition of a fensor may be generalized by allowing an arbitrary power of
4 in the equation of transformation. This will not affect the definition of the tensor as a set
of derived variables, for if 4’ represents n sets of cogredient variables, and x’ represents »
sets of contragredient variables, then the determinants | «{” | and | x{;, | are invariants of weight
+1 and —1 respectively. The introduction of powers of one or the other into the function
which is held invariant will introduce the appropriate power 4% in the equation of trans-
formation of the tensor. With tensors as with concomitants, the index ¢ is called the weigh.

THE RELATION BETWEEN THE WEIGHT AND RANK OF A TENSOR

A cogredient tensor of rank n and type {17}, where 7 is the number of variables, has a
single component, and is thus a relative invariant. It is easily seen to be an invariant of
weight unity.

Also, since, in 7 variables,

A 4+1,,+1,00,4,+1} = {1"HA, Ay, .., A,

it is clear that the matrix of transformation of a tensor of type {A;+1, ...,4,+ 1} is the same
as the matrix of transformation of a tensor of type {A,,...,A,} save for a scalar multiplier
equal to 4. ‘

Thus a tensor of type {4, +1,1,+1,...,4,+ 1} and of weight p is equivalent to a tensor of
type {A,, ..., 4,} and weight p+1.

If a cogredient tensor corresponds to a partition for which A,+#0, then the rank may be
decreased by n provided that the weight is simultaneously increased by one.

This equivalence may be illustrated with an example. Let 4,;, be a symmetric tensor.
Corresponding to the tableau

(i, 5k, r)
re 7

— Ay Aigy— Aigr Apjr+ Apgr Ay

a tensor of type {42} is constructed:

B =A.. A

ijkpqr ik pgr

If there are only two variables, the only components of this tensor which are not zero
correspond to one of the four combinations
1
2 bl

JOCAR B e M A A

and also B\ 1k29r = — Borriar = — Biogarr = Bogranr

I
Il

l
Il

9
J

The tensor is thus reduced to a tensor of rank 2, but because of the appropriate transforma-
tion factors pertaining to the specified 1st, 2nd, 4th and 5th suffixes, it has a weight equal to 2.
This conforms with the equation, valid for two variables

{42} = {2172

38-2
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316 D. E. LITTLEWOOD ON

CONTRAGREDIENT TENSORS

The case of contragredient tensors is similar to that of cogredient tensors. The matrix
of transformation for cogredient variables, 4, is replaced by 41, the matrix of transformation
for contragredient variables. This involves the introduction of negative powers of 4 = | 4 |.
In addition each coeflicient g, in the characteristic equation is replaced by a,_,, including
the cases » = 0, r = n.

From the formula (Littlewood 1940, p. 89)

A} = ap—sutl
on replacing each a, by a,_, it is seen that the S-function {A}={A,,4,, ...,4,} is replaced by
the S-function
= Ay =2y gs s Ay — Ay, O}
Thus the complete contragredient tensor of rank 4 in four variables separates into simple
tensors corresponding to the partitions {4%}, {322}, {22}, {21%} and {0}. The tensor corre-
sponding to {0} is a relative invariant.

If a contragredient tensor is compared with the reciprocal 47! of the original trans-
formation, and its type is {A} relative to this reciprocal transformation, it will be said to be of
contragredient type {A}.

Thus a tensor of contragredient type {A;, ..., 4,} is a tensor of cogredient type

= i —2A,_ 1, o A — Ay, 0}
and of weight —A,.

Given a tensor of cogredient type {A} and weight p, the equivalent tensor of weight zero
is of type {A, +p, A5+ p, ..., A, +p}, provided that 1, +p=>0.

If A, +p <0 there is no equivalent tensor of weight zero according to previous definitions.
It is convenient, however, to define S-functions with negative parts, and to make tensors
correspond to partitions with negative parts so as to make the equation

G +1,,+1, A, 1) = {17} {4, Ay, .., A}

true in all circumstances. The relations between the rank and weight of a tensor then hold
without restrictions of sign. The contragredient rank is for this purpose reckoned as negative.
Then a tensor of contragredient type {A,, ..., 4,} will be of cogredient type

{'—/In, —/111—17 ooy '_‘/11}.

MIXED TENSORS
A complete mixed tensor of rank (r+s) separates into simple tensors in accordance
with the formula which expresses @} a;_, as a sum of S-functions.
Thus since a8, = {2, 1" 2}+{1"},
a tensor A% of rank (1+- 1) is the sum of an invariant pr A% and a simple tensor of type {2, "2},

or {1,072, —1}.
The formulae for the analysis of the complete mixed tensor in the general case will not
be examined here.
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MurTIPLICATION AND CONTRACTION OF TENSORS

By the product of two tensors with say p and ¢ components respectively is meant the set
of pg components obtained by multiplying these components in pairs. To write down such
a product it is necessary to give only the product of typical elements.

Tensors have two fundamental properties upon which their usefulness depends:

(1) The product of two tensors of ranks respectively (r+s) and (r'+s") is a tensor of rank
[(r+7) +(s-+5)].

The property is obvious from the definition of a tensor.

(2) Ifin a tensor of rank [(r+1) 4+ (s+1)] any given upper suffix is put equal to any given
lower suffix and the result summed for all values of the pair of suffixes, a tensor of rank
(r+s) is obtained. '

In proving this result it is sufficient to consider a tensor of rank (1+1). If there are other
upper and lower suffixes, these will appear both in the original and in the final tensor. After
transformation there will appear for each suffix a corresponding factor £ or #2 which will
give the correct method of transformation for the final tensor.

If A is a tensor of rank (1+-1), it follows that

A= 2 AL .

Hence if B=2X45,
then B =qu1 APE 7.
But since (7] &1 =1,
so that 2yLE, = 04y
then | B = XA} = B,

and B is an invariant or a tensor of rank 0.

‘This process of putting an upper suffix equal to a lower suffix and summing is called
contraction.

THE SUMMATION CONVENTION

It is convenient when dealing with tensors to omit the summation sign and to make the
convention that if the same symbol is used for both an upper and a lower suffix, then a
summation is understood to take place in which this symbol takes all values from 1 to 7.

THE FUNDAMENTAL ALTERNATING TENSOR
Let Bpl...pr = ¢A 1 ese prd

where ¢ is a substitutional operator, be a tensor of rank r and type {1’}. The appropriate
operator ¢ corresponds to a Young tableau which consists of the r symbols placed in one
column, and thence ¢ is the negative symmetric group of permutations on these symbols.
Ifa, f are any two of these symbols, then ¢ may be expressed with a left-hand factor [1— (a)].

Hence [1+(ef)]¢ =0, and B, , =—(f)B, -
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318 . D. E. LITTLEWOOD ON

Thus each component of the tensor is changed in sign if any two suffixes are interchanged,
and such a component can only differ from zero if the r suffixes all take distinct values.

In particular, if £, , is of type {17}, with n variables, the only non-zero components are
those for which the suffixes form a permutation of 1, 2, ..., n, and if

Epyn=F,
then Epugz,,‘pn = :tk)

according as this permutation is positive or negative.

Thus, apart from an arbitrary scalar multiplier the tensor of type {17} is unique and
independent of any sets of variables or coeflicients. It is thus a fundamental tensor and is
called the fundamental alternating tensor or simply the alternating tensor.

The scalar £ is a relative invariant of weight unity, as is easily seen from the equation

4 — q qn
E[)I...pn - qu.“qn’] i"'” n

= I”gIE Iy -

There is a correspondihg contragredient tensor
Epvetr =0 ifp, = p;
=k" ifppy...p, 152 positive permutation of 12... 7
= —£’ if a negative permutation.

Clearly £’ is a relative invariant of weight —1, and so one may take
k' = 1/k.
In four variables these tensors have been discussed by Eddington (1923, p. 107) under
the name ‘the alternating tensor of the 4th rank, and in 3 or 4 variables by Levi-Civita
(1925, p. 159) as ‘e-systems’, but the fundamental importance of these tensors does not

appear to have been recognized.
It is now possible to obtain in specific form the results mentioned in the last section con-

necting the weight and rank of a tensor.

Let Aal...cxm = ¢Ba1-.-dm

be a tensor of type {d;+1,4,+1,...,4,+1}, where ¢ is the operator NP obtained from a
Young tableau corresponding to this partition, in which for convenience we will suppose
that the n symbols in the first column are the first z suffixes «;, ..., a,. Itis desirable to express
4, .., 1in this manner so as to ensure that it is expressed as a tensor in the correct form, but
it is immaterial whether B, _,, is a tensor equivalent to 4, . ,,, or a complete tensor of
rank m, or some intermediate tensor, provided of course that the operation of ¢ does not
give zero.

Then clearly N, and hence ¢, can be expressed with a left-hand factor which is the negative
symmetric group on the symbols «y, ..., «,. Hence if § represents a positive and 7" a negative
permutation of ay, ..., «,, then

N=SN——TN, §=S84——T¢,
and 4 veom SAa, veeam TAocl eeom®

223
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Thus the n! components of the tensor 4, . obtained by permuting the first # suffixes
are all equal, save for sign. Hence the effect of multiplying by the contragredient alter-
nating tensor and contracting with respect to the first # suffixes is to add these equal terms,
replacing them by a single component z! times as large. Then from (1) and (2), p. 317,
the tensor

C

Clntp eve OM

= Fou.on Aoc

100s R Clnt) ooe O

is a tensor of type {4,, ..., 4,,}. Owing to the weight of the alternating tensor, by this operation
the weight of the tensor is increased by unity.
The tensor 4, . . can be obtained from C

wnty...am Dy multiplication by the cogredient
alternating tensor

ntd, .

For the generalization in which S-functions are allowed to have negative parts, the
suffixes corresponding to these negative parts are left as uncontracted contragredient
suffixes.

m = Edl-- C

7 cOn T Cntp eee Om®

THE ALTERNATING TENSOR WITH A METRIG AND TENSOR DENSITIES

Sometimes tensors are used in conjunction with a fundamental quadratic form such as is
used to define the distance between two points. This is called a metric form, and the tensor of
coefficients is called the metric tensor, and is usually denoted by &, The corresponding contra-
gredient tensor g~ is defined so that

[g"] = [g. 7

{-——1 if A =p,
=0 ifd+£u

14

and thus grg,, = &)

The determinant | g, | is denoted by g, and clearly | g%| = g~ 1.
If a metric is introduced it is convenient to take the arbitrary scalar £ in the alternating
tensor so that the suffixes can be raised or lowered by means of the metric tensor, i.e. so that

By in = 8irj\ 8ingy -+ Ginjn B0
This will be the case if
k= gk1,
so that £ = ,/g. This value of £ is always taken if there is a metric.

It may be noticed that in tensor calculus (Eddington 1923, p. 111), when a tensor is
converted into a tensor density, a factor 1/,/g is introduced, and a factor /g is always intro-
duced when a tensor is integrated through a volume. The necessity for the introduction of
such an irrational expression as /g would be otherwise difficult to explain, but it is clear that
the presence of this factor is really indicative of the presence of the alternating tensor.

In fact, if the element of volume is a generalized parallelepiped with edges 4, x;, 8,4, ...,
d,%;, then the volume 8V of this element is given by

SV = Eivind\ x, 8y, ... 0

nX

i
which shows the appropriate position of the alternating tensor in an integration formula.
It is a characteristic property of the alternating tensor when taken over the orthogonal
group, i.e. the group of transformations which leave the metric tensor invariant, that it is
invariant for a proper rotation, but is changed in sign by an improper rotation, i.e. an
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orthogonal transformation of negative determinant. This property is shared by any expres-
sion giving the volume of a region, and this confirms that the integration over a volume should
properly involve the alternating tensor.*

THE 0-SYMBOLS

Certain combinations of alternating tensors are of interest.

Clearly Eiu-inl, o o=nl

o —(n—1)! if i=&,

Also Bt Eka.,_,-n{: 0 it o4k

Putting 0! = 1, 8 = 0, i £, this tensor may be expressed as (n—1) ! 4;.
Again Bt By, = (1-2)! (R0~ 05)

= (n—2)!10pk.

1Kafs e jn

This symbol d8i:i is used to denote -1 if the lower suffixes form a positive permutation of
the upper suffixes, —1 if a negative permutation, and 0 if either the upper or the lower
suffixes have a repeated symbol or if the lower suffixes do not represent a permutation of the
upper suffixes.
The definition of 8% # is similar, and clearly
Eiveiririnecin
From the manner of their formation from alternating tensors, these symbols are clearly

tensors.

1...krjr+1...jn = (n_r) ! é\’li?i .-..'.;C';"

SIMPLE VARIABLE TENSORS

In this section, since contragredient variables are being dealt with, when reference is
made to a tensor of type {1}, a tensor of contragredient type {1} is to be understood.
The product of r identical tensor variables, e.g.
xhxt . xh

clearly forms a symmetric tensor, or a simple tensor of type {r}. To obtain a tensor corre-
sponding to a partition into more than one part, more than one set of variables is necessary.
Products of variables from different sets, however, do not form a simple, but a complex
tensor, as a simple example will show. Thus

XY = T‘la‘(xiyj + xj%’) +5(x%y;— xj%’):

and the product x;y; is clearly equivalent to the sum of a symmetric and an antisymmetric
tensor.

To separate products of variables into simple tensors the d-symbols are used. The tensor

gl b = i b gigde )

is clearly an antisymmetric tensor, or a simple tensor of type {1"}. As a set of variables, this
tensor is usually called the 7th compound of the original variables x, y, .... Assume now that
the sets of variables are ordered in some way, and that x%, y%, ..., w’ represent the first r sets
of variables. Then x4 will henceforward denote this tensor.

* See Eddington (1936, p. 58); iE; corresponds to the alternating tensor.
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Next it is shown that a simple tensor of type {A,, ...,4,} can be obtained by multiplying
tensors of this form. '

Lemma 1. A simple tensor of type {A}, Ay, ..., A,} obtained from p sets of variables xiyy, Xy, ..., %fy)
is of degree at least A, in the variables xj,.

The number of variables in each set is taken to be p, putting xf7! = x£72 = ... = 0 if
necessary. Since the number of parts in the S-function {1} does not exceed the number of
variables, the S-function will not be identically zero, and neither will the tensor of type {A}.

If, however, a linear relation '

Za;xlyy (1<j<p)
is introduced in each set of variables, the number of linearly independent variables is
reduced to (p—1). Hence since the number of parts now exceeds the number of variables,
the tensor must be identically zero.

Thus, by the remainder theorem, the tensor is exactly divisible by |, |. Since | %, |
is a relative invariant, being a tensor of type {1#}, the quotient is clearly a tensor of type
Lh—1,2,—1,...,4,—1}.

Repetition of the argument shows that the tensor is divisible by | /|, and the quotient
is then a tensor of type {A;, —1,,4,—A4,, ..., 0}. The lemma follows. |

Cororrary. If the degree of the tensor of type {A} in the variables x{,) is exactly A, then
the degree in the variables x{,_;,is =1,_;. If the degree in the variables x, is 1, and in the
variables x{, i, is 4,_,, then the degree in the variables x{, 5 is >1,_,, and so on.

Lemma II. The product of two tensors of types {A} and {u} respectively is expressible as a sum of
tensors of those types which correspond to the S-functions appearing in the product {A} {u}.

To prove this it is observed that the matrix of transformation of the product of the tensors
is the direct product of the matrices of transformation, and thus the spur is the product of
the spurs, namely, {1} {#}. It does not follow that for each S-function in the product {A} {x}
there will be a non-zero tensor, for the corresponding terms may be identically zero, e.g. in
the product tensor x'x/, the terms x'x/ —x7x’ are identically zero, and the tensor of type {1%}
does not arise.

The essential theorem concerning variable tensors may now be proved.

THEOREM. The product (x')M1=22 (x7) 2223 (xiiK)As=Xs 45 a simple tensor of type {1, Agy ...y A}

By (x')A1~%2is meant the product of (1, —A,) tensors each equal to #. There will be (4, —A1,)
different suffixes. Similarly for (x%)%2-%s, which will have 2(1,—2,) different suffixes.

The tensors which appear in the product will be of rank (4;4-1,4-...4-4,). Since &’ is
of type {1}, x¥ of type {12}, etc., then if a tensor of type {x,, s, ..., #,} appears in the product,
the S-function {u,, #s, ..., #,} must appear in the product

{1}/\1—/12 {12}/\2~A3 {13}/\3—/\4””
It will follow that L+t A, =y pp
and also IS Ay g o <A gy g+ ply s <A A+ A, e

Further, since the number of sets of variables is p, the degree of the tensor in the variables
X, is 4,, and in the variables x(,_ is 4,_;, etc., it follows that

Uy =0, ﬂpg/lﬁ’ Iul)—lgllﬁ—l’ e

Vol. 239. A. 39
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and therefore b= =Ry ey Wy = A,
and ) = (.

Since, further, the coeflicient of {A} in the product {1}M-22{12}22-2{13}s-24 {5 unity,
it must follow that the tensor is simple.

The tensor defined in the theorem is called a Clebsch variable tensor, after Clebsch (1872),
who stated precisely the fundamental character of these sets of variables.

The fundamental property of these tensors, which follows immediately from the defini-
tion, is as follows:

THEOREM. The product of two simple Clebsch tensors of type {Ay, Ay, ..., A} and {py, fo,. .5y}
respectively is a simple Clebsch tensor of type {A +pu1s Ay oy + -y Ay fh, )}

COGREDIENT VARIABLES

Sometimes, in addition to the various sets of contragredient variables #, ¥, 2, ..., some
sets of cogredient variables u;, v;, w;, ... are used. These may be treated in the same manner
as contragredient variables, and the corresponding tensors may be converted into contra-
gredient tensors by the use of the alternating tensor. An example in four variables will
suffice.

Let &, 4, Zi, £ be four sets of contragredient variables. Now choose the cogredient
variables so that

- j o7k - ik
i U = By xl yF 2, U = B X y*E",
- i ok - i ok
w; = Ky, %7 Z8Em, 0; = Ep,y7 2FEm.
Hence, since E 'y’ Z°§" = 4, an invariant,
it follows that ubi =02 = wy = wx =4,

U =y = wz =5 = vy = .8 = wxt
=w;z = w;l =y = w2 = w,E = 0.
From the properties of determinants it follows that

— Ny — km _ NJK — A2
U; = 3ij Uy Uy = AEijkmx s Ui = 5ijk Uy Uy Wy = 4 Eijkmxm'

Thus the cogredient variable tensors w;, u;, ;. are equivalent to the contragredient
tensors xVk, x| xi,
ALGEBRAIC FORMS

An algebraic form f(a;; xf;)) or f(a;; 4% ; u%) is called an invariant form if it is a polynomial
in any number of sets of contragredient variables xf;,, and also possibly sets of cogredient
variables %), and if, whenever the variables are subjected to a linear transformation, the
coefficients g; are also subjected to a transformation in such a manner that the form f remains
invariant, absolute or relative.

The set of coefficients clearly form a tensor. The form itself may be regarded as a tensor
of zero rank. If the tensor of coefficients is simple or complex, the corresponding form is said
to be simple or complex. A complex form may clearly be expressed as a sum of simple forms.
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Two simple algebraic forms which have the same tensor of coeflicients are said to be

equivalent. They may be obtained from one another by operators of the type y; % These

are called polar operators and the process is called polarization (Turnbull 1928).

A FUNDAMENTAL PROBLEM OF INVARIANT THEORY

In the general problem of invariant theory some set of invariant forms called ground
Sforms are given, each of which may be supposed to be simple, each of these having an
arbitrary independent coefficient for each term of the corresponding tensor of variables.
Then in addition to these forms many other invariant forms may be written down whose
coefficients are polynomials in the coefficients of the ground forms. These are called con-

" comitants. It is a major problem of invariant theory to determine the complete set of con-
comitants of a given set of ground forms.

REeDUCIBILITY

The set of concomitants is obviously infinite in number, and further, the number of
linearly independent concomitants is infinite, for the powers and products of concomitants
are clearly concomitants. To reduce this infinite set to a finite set, the concept of reducibility
is introduced. Hilbert (189o) has shown that for any set of ground forms there exists a finite
set of concomitants, called a basis, such that every concomitant may be expressed as a poly-
nomial in the concomitants of the basis with fixed coefficients.

For a given set of ground forms such a basis may be constructed by examining the con-
comitants in ascending degree in the coefficients of the ground forms, one by one. Those
concomitants which can be expressed as polynomials in the concomitants of lower degree
are said to be reducible and are rejected. A concomitant which is not reducible is irreductble
and is retained as a member of the basis.

Concomitants which are equivalent to a given concomitant, i.e. having the same tensor of
coeflicients, are not treated as separate concomitants.

A certain complication arises at this point, however, because, if X and Y are two in-
variant forms, and X’ and Y’ are two other forms equivalent to them, then X'Y’ is not
necessarily equivalent to XY. A simple example will illustrate this.

The product of the two simple linear forms g%, b,x' is the simple quadratic form
a;b; x'x. But the product of the two forms a;x?, ;5" is a complex form

aibjxiyj = %(aibj+ajbi) (¥y? +x7y') +%‘(aibj_djbi) (y? —xiyt).

The whole concept of reducibility is in this way imperilled. Thus the quadratic a;xx/
has a concomitant

@ @y, X Xy X Xy
. . ,
A;  Cgm Y Yk Y Ynm

which is usually regarded as irreducible, but which can be expressed as a polynomial in
the ground form and equivalent forms, namely,

(a;427) (@ y*y™) — (ax'y9)2.
39-2
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In a similar manner every concomitant of a given set of ground forms may be expressed as
a polynomial in these ground forms and equivalent forms.

Such a basis, however, would be of no practical significance, as it would certainly not
convey all the information regarding the concomitants.

The situation is restored by the restriction that all ground forms and all concomitants of
the basis shall be expressed as Clebsch forms. For any given algebraic form there is one and
only one equivalent Clebsch form. A concomitant is said to be reducible only if the equi-
valent Clebsch form is expressible as a polynomial in the Clebsch forms of the basis without
polarization.

A Clebsch form is a form in which the tensor of variables is a Clebsch tensor as previously
defined. These have the fundamental property that the product of two simple Clebsch
forms is a simple Clebsch form, a fact which follows immediately from the corresponding
property of Clebsch variable tensors.

With this restriction the basis of a given set of ground forms is obviously unique, save
that to each irreducible concomitant may be added any polynomial in the irreducible con-
comitants of lower degree provided that the degree in the coefficients of each ground form,
and also the type, i.e. the partition with which it is associated, is the same as for the irre-
ducible concomitant.

If the basis of a given set of ground forms is known, and also the syzygies, i.e. the algebraic
relations which are satisfied by the concomitants of the basis, then a complete knowledge of
all the concomitants follows.

CONSTRUCTION OF CONCOMITANTS

A comparatively simple method for the construction of concomitants, but one which,
though persistently used in Riemannian geometry and in physics, has not been generally
employed in invariant theory, is by the multiplication and contraction of tensors. Tensor
coefficients of the ground forms are multiplied together in any manner. The product is
then multiplied by the alternating tensor if and as often as desired, and by a Clebsch variable
tensor in such a manner that the number of upper and lower suffixes are equal. If then
the process of contraction is used to eliminate all suffixes a tensor of rank zero is obtained,
and therefore, if the result is not identically zero, a concomitant of the ground forms.

By this means an unlimited number of concomitants may be written down. The drawback
is that many such expressions on evaluation prove to be identically equal to zero, many
different expressions represent the same concomitant, and many prove to be linearly
dependent. A technique is needed to distinguish the independent concomitants. However,
it is necessary first to show that all concomitants can be obtained by this method.

THE FUNDAMENTAL THEOREM

Every concomitant of a given set of ground forms may be obtained by multiplying tensor coefficients,
tensor variables, the alternating tensor as required, and contracting.
Let the variables undergo the transformation

X7 =&, x=gixl.
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Every concomitant may be expressed as a sum of concomitants each of which is a simple
form and is homogeneous in the coefficients of each ground form. It is assumed that only
one such simple form is considered.

Let the concomitant be expressed in the form

= Piita, by x0T

i G
Oy Ol eee

a numerical coefficient which is given an upper suffix equal to each lower suffix in the

accompanying tensors, and a lower suffix equal to each upper suffix.

These coeflicients P may be chosen so that they satisfy the same symmetrizing relations
in respect of their suffixes as the tensors which they accompany, e.g. if one of the tensors
a; is symmetric or antisymmetric in these two suffixes, then coefficient P also will be sym-
metric or antisymmetric in these suffixes. Further, if the concomitant is of degree >1 in
any of the ground forms, it can be arranged so that the coeflicient P will be unaltered for
the interchange of any two tensors obtained from the same ground form. This can be
assured if P is operated on with all the idempotent operators, permuting the suffixes in
Q... 05, 5,... %772, which leave this tensor product unaltered.

If this be done, then, if the concomitant is given the coefficients P will be uniquely deter-
mined, and further, after a transformation the coefficients will still possess the same pro-
perties.

The coefficients P are thus invariants of the transformations, but because of the invariance
of the form £, the coeflicients P will also transform like a tensor.

Thus after transformation, an identical relation connecting the elements £ and 7} of the
transforming matrix and its reciprocal, arises, i.e.

where a » bgg,..., €tc. are tensor coefficients, x717:+, etc. are tensor variables and P is

Phizjo= Pl = PRl b Ll opgf.
If the weight of the concomitant fis not zero, allowance must be made for a power of the
determinant 4. To avoid any such modification the group of transformations is restricted
so that the determinant | £ | is unity. The matrix [£] is otherwise in no way restricted, the

only algebraic relation between its »? components is that | £ | = 1. This relation may be

expressed Eieweinif g | £ — i,

in

Again, the elements of the reciprocal matrix [7§] may be expressed in terms of the &l by
means of the alternating tensor, e.g.,

(n—1)lyi = EéieinE,, . Eiks | gl

JJ2+++JnOl2 O3 °°° Oin*

Hence every algebraic relation connecting the quantities £, 7¢ can be expressed by com-
binations of alternating tensors. This holds in particular for the algebraic relation obtained
above. It follows that the tensor of coeflicients Pi ¥ can be expressed as a combination
of alternating tensors, and the theorem follows.

THE SYMBOLIC METHOD

It has been stated that the method of tensors has not generally been used in invariant
theory. A powerful method which is in general use, and which, in its elementary application,
is more or less equivalent to the method of tensors, is the symbolic method (see Turnbull
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1928). A complete account of this here would be superfluous, but since its relation with the
tensor method is to be shown, it will be illustrated with reference to the binary cubic.

The binary cubic ayx+ 3a, x%y + 3a,xy*+ as y®
is represented symbolically by the form
(0‘1 X+ %Y ) 39

so that the products af, af &y, @, @3, o3 are interpreted respectively as a, a;, 4y, a5. Itis true that
the symbolic expressions satisfy certain algebraic identities which are not satisfied in general
by the coefficients, e.g. a,a, = a}, a,a; = a, a,, etc., but such errors as would arise from these
identities are avoided by the restricting condition that every expression shall be linear in
the coefficients and hence of degree exactly 3 in the symbols. Ifit is desired to write down
expression of degree greater than unity in the coefficients, a different system of symbols is
employed, and the cubic is represented alternatively as (8, 2+/£,9)% (y,4+7,9)° etc., and
such expressions only are employed which are of degree exactly 3 in each set of symbols.

The two expressions (@, x +a,y) and (o, f, —a, /) remain invariant under a transformation
as do such other expressions as might be obtained from these by changing the symbols for
other sets. Products of expressions of these forms are taken, with the restriction that the
degree in each set of symbols is exactly 3. The expressions are multiplied out and each term
interpreted in terms of the coefficients in the cubic, a,, a;, @y, a;. Because of the invariance
of the factor forms (a; x+a,y) and (a,f,—a,f,), the final expression also will be invariant,
and thus gives a concomitant of the cubic.

A fundamental theorem is proved that every concomitant can be expressed symbolically -
in terms of these two fundamental factors.

The connexion with the method of tensors is quite simple. Each set of three symbols
a, f§, or y corresponds to a tensor of coefficients of the cubic. Each factor («; ¥ +a,y) indicates
that one of the lower suffixes of the tensor is contracted with an upper suffix of a variable x*.
Each factor (¢, f,—a,f;) indicates that the two suffixes, one from each of the corresponding
tensors, are contracted with those of an alternating tensor £V,

As an example, the binary cubic has a quadratic covariant of degree 2 in the coeflicients
which explicitly is

2[(aya,—af) &%+ (agas—a, ay) xy -+ (ay 23— a3) y°].

The symbolic expression for this is
(1 fo—af1)? (oy 5+ any) (f12+F2Y)s

and the expression in tensors is

A Ay ELETmxE XM,

ijk“lmn
This correspondence between the symbolic and tensorial expression of a concomitant
becomes apparent in the general case if both methods are used simultaneously, the tensors
being factorized symbolically as products of tensors of rank unity.
The symbolic method is justified by the far-reaching results that can be obtained by its
use, but the artifice of representing the general cubic by one which is an exact cube involves

an apparent deviation from fact which is distasteful to some people. I believe that it has not
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previously been recognized that this objection can very easily be overcome, and the symbolic
method placed on a sound logical basis as follows (see also Turnbull 1928 ; Grace & Young
1903, pp. 365-366).

Although every binary cubic is not an exact cube, it is expressible as a sum of cubes. The
number of cubes which must appear in the sum is irrelevant. The cubic can thus be expressed
as a3+ 3Xaf ay %%y + 32w, a3 xy? + e yd,
the summation being with respect to the various cubes involved.

Every symbolic expression which is of degree exactly 3 in the «’s may thus be summed
with respect to these cubes and the symbolic products will be replaced by the corresponding
coeflicients. ‘ ,

In the general case, for a ground form of type {A}={A,,4,, ...,4,} in any number of vari-
ables, the tensor of coefficients is replaced by a tensor constructed by means of symbols in
exactly the same manner as the Clebsch coefficient tensor is constructed from the variables,
i.e. the symbolic form is expressed as (Clebsch 1872; Capelli 1880, 1882; Clebsch & Capelli
1891, 1892; Clebsch & Gordan 1872, 1875)

(@ x) =2 {(af; — o B;) (A7 — Iy ) Pt { (e yp—-..) (wiylzh— )P

"o justify the use of such a form it is necessary to show that every simple form of this type
may be expressed as a sum of symbolic forms of this type. This is proved by a reductio ad
absurdum. The set of forms which can be expressed as a sum of symbolic forms of this kind is
clearly a linear set which is closed to the group of linear transformations. If this does not
include every form of type {1}, then the set of forms of type {A} possesses a subset which is
closed to the group of transformations. Hence the forms of type {A} are not simple but
complex, contrary to hypothesis. Thus every form of type {A} can be expressed as a sum of
symbolic forms, and the use of the symbolic method is justified.

The real problem of invariant theory consists in the selection of the irreducible con-
comitants from the large body of forms given by the symbolic or tensor method. A con-
siderable body of technique has been produced in connexion with symbolic method to this
end. Whether this technique could be translated effectively into the tensor notation cannot
be said, as the attempt has not been made. But the method of tensors seems to lend itself
more effectively to another approach based on group characters, group representational
theory and the quantitative substitutional methods of A. Young. This will be dealt with
in Part II of this paper.

CONCOMITANTS UNDER RESTRICTED GROUPS

The group of transformations so far considered has been taken either as the full linear
group, or as the group of transformations with unit determinant. The transformations may,
however, be restricted to some special kinds of transformation, e.g. the orthogonal group
or the simplectic group.

Such groups will be subgroups of the full linear group. The representations of the group
may be obtained from the representations of the full linear group.

An irreducible representation of the full linear group will of necessity give a representation
of the subgroup, but such a representation may be reducible. The reduction of these repre-
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sentations into irreducible components will give all the representations of the restricted
group. There will, however, be repetitions, the same representation of the restricted group
appearing as component parts of different representations of the full linear group.

Corresponding to each decomposition of a simple representation of the full linear group
into irreducible components we have a similar decomposition of the corresponding tensors.

Thus a tensor which is simple over the full linear group may be complex over, for example,
the orthogonal group. And the decomposition into simple tensors follows exactly the
decomposition of the simple representation of the full linear group into simple representa-
tions of the restricted group.

An essential preliminary to the study of concomitants over a restricted group is an exam-
ination of the simple representations of the group, for only thus can the simple algebraic
forms over the group be determined.

The restricted group is generally taken to be the group which leaves a certain form or
forms invariant (see Klein 1921, pp. 409 et seq.). Thus the orthogonal group leaves a quad-
ratic form invariant, the simplectic group leaves a linear complex invariant. Thus there is
available, as well as the alternating tensor, the tensors of coefficients of these invariant forms
which will be called fundamental tensors.

Considerations of space prevent a full account here, but it is hoped to develop the corre-
sponding theory for restricted groups in another paper.

PART II. GROUP REPRESENTATIONAL METHODS
THE NEW MULTIPLICATION OF S-FUNCTIONS

In a previous note (Littlewood 1936 4) an application of group characters and S-functions
to invariant theory was described. A brief resume is given here and further generalizations
obtained. The methods of the note gave only the number and type of the concomitants.
The corresponding results in representational theory and substitutional analysis also are
developed here, by means of which the actual concomitants can be constructed. Further
extensions of the theory are made to concomitants over the orthogonal group.

Let f(«f) =f(x, 42, ..., x*) be an n-ary p-ic, i.e. a polynomial of the pth degree in n variables
x. If X denotes the column vector [x*] and X' denotes the pth induced matrix of X, then the
polynomial /' may be expressed in the form

Jf=FX,
where F is the row vector whose elements are the coefficients in f.

When the variables undergo a linear transformation, this may be expressed in the form,
remembering that the variables are contragredient,

X' =A471X, or X=A4X,
A being the matrix of the transformation. Then X% will be transformed by the pth induced

matrix of 4, i.e. X — A X,
Hence J=FXP—=FX®
= FA® X"

and thus F' = FAW®,
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The manner of transformation of the homogeneous products of degree ¢ of the coefficients
forming F is sought. This will be given by the equation of transformation of the gth induced

matrix of F, i.e.
F’(q} — F{q} [A(p}]{q}.

The matrix of transformation is thus the gth induced matrix of the pth induced matrix
of 4.

According to Schur’s definition of an invariant matrix, an invariant matrix of an in-
variant matrix is clearly an invariant matrix, though not in general irreducible. An induced
matrix of an induced matrix will thus be an invariant matrix, but in general reducible, and
equivalent to a direct sum of irreducible invariant matrices in the form

[AP]@ = AW,
the symbol X denoting direct sum, and AW denoting the invariant matrix of 4 corre-
sponding to the partition (1) = (A;,4,,...,4,).

To each such term A" there corresponds a set of linear combinations of products of
degree g of the coefficients in F, such that these transform in the manner of a tensor of type
{A}. Multiplying by the appropriate Clebsch variable tensor and contracting, a concomitant
of type {1} is obtained.

Now define a new multiplication of S-functions represented by the symbol ®, such that, if
(A), (#), (v) represent partitions, and

[ A{/\}]{p} =X AY,

then A @ {u} = Z{v}.
The following theorem is thus demonstrated :
TrEOREM. If {p}®{q} = Z{A},

then for each S-function {A} which appears in the sum the n-ary p-ic has a concomitant of degree q in the
coefficients, and of type {A}.

The generalization to a ground form of type {4} is obvious. The S-function {p} which has
hitherto been restricted to correspond to a partition into one part only is replaced by the
general S-function {4}, and the equation becomes '

ey =24

It may be noticed that in this application to invariants the right-hand factor in a new
multiplication is usually a partition into one part only, while the left factor may represent
any S-function.

For a set of two ground forms corresponding to partitions {#} and {»}, the concomitants
which are of degree ¢ in the first and 7 in the second set of coefficients are sought.

The matrix of transformation of homogeneous products of degree ¢ in the coefficients
of the first corresponds to the expression

{u}©{q}

and the matrix of transformation of homogeneous products of degree r in the second
corresponds to
{r}e{r}.

Vol. 239. A. 40
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The matrix of transformation of homogeneous products which are of degree ¢ in the first
and 7 in the second will clearly be the direct product of these two matrices, and since the
spur of a direct product is the product of the spurs will correspond to

[ e{g] [} e ],
the multiplication between the brackets being the ordinary multiplication of S-functions.
Hence if [npoigl [y e ] = 21}

there will be a simultaneous concomitant of the two ground forms of degree q in the first and r in the
second, and of type {A} for each S-function {A} in the summation.

A similar result holds for any number of ground forms.

A particularly simple case is the problem of finding the concomitants which are linear
in each of a given set of ground forms. The new multiplication is not then required. If the
types of the ground forms are respectively {«}, {1}, {£}, ..., {{}, then the types of concomitant

are given by
W &} {80 = 2

The ordinary multiplication of S-functions is easily evaluated (Littlewood & Richardson
1934 0; Littlewood 1940, p. 94). The determination of {¢} ® {v} is not so easy and requires a
technique. This will be considered in Part III of this paper.

Some properties of the new multiplication are important, and five theorems concerning
the operation ® are now proved. :

First, AW*%istakentomean 4 + A% + denoting directsum. Itfollowsimmediately that:
- (I) The operation ® is distributed with respect to addition on the right only. Concerning addition
on the left, it is noted that if {1}" and {A}" denote S-functions of different sets of p and ¢
quantities respectively, and {1} denotes an S-function of the complete set of (p+¢) quantities,

then (Littlewood 1940, p. 105)
= Zgun ) B},

the summation being with respect to all pairs of S-functions {x}, {v}, such that {A} appears in
the product {x}{v} with coefficient g,,,, including the cases {#} = {0} = 1, {1} = {A} and

{uy = {3, = {0} = 1.

It follows that
(1) {u}+ {1} o {4} = Zg,plin} (0] [{v} © {£}].

In the above (Littlewoad 1940, p. 99), if {4}, {A}" and {A} are associated respectively with
the series f, g and F = fg, then if # represents the series g™, it follows that /= Fh. Denote
S-functions associated with % by {A}”. Then if (1) is a partition of d

ay = (-1eqy,
() denoting the partition conjugate to (1).
Hence W = 2wl iy
:Z(_ l)dgw {Iu}{l)}”
It follows that o

() [{n—le ) = (—1)ig, Ko ] [ efl,
(B) being a partition of d.
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(IV) The operation ® is associative. ‘ ,

Let K = [[AW]®]® denote the invariant matrix corresponding to {v} of the invariant
matrix corresponding to {u} of the invariant matrix of 4 corresponding to the partition {1}.
If that portion [AW]%# of the expression for K is replaced by the equivalent direct sum of
invariant matrices, the effect is merely to transform it by a fixed matrix, and hence K also
is transformed by a fixed matrix, its canonical form remaining unaltered. Similarly, if
B =A™ and [B"]% is replaced by the equivalent sum of invariant matrices, then the
canonical form of K is unaltered. Taking the spur of K it follows that

, [We{yle )= e lue il
and the theorem is proved. ‘ ‘

Lastly, consider [{A}{u}] ® {}. If («) is a partition of n, let x'*’ denote the characteristic
of the class p of the symmetric group of order n! corresponding to the partition (1). Then
since the product of two simple characters of the group is also a character, simple or com-
pound if (£) also is a partition of n, ¥* ¥#) may be expressed in the form

X Xp) = ZK 5 X3
With this definition of K ., the theorem is as follows:

V) [ ] @ (v} = 2K, [{1} © {d] {4 @ {B}].

The proof is as follows. Suppose that (v) is a partition of #n. Let S, denote the sum of the
rth powers of the characteristic roots of AW, and Z, the sum of the rth powers of the cha-
racteristic roots of 4. Then the sum of rth powers of the characteristic roots of the direct
product is S, Z,.

Let p denote the class (1922 3¢... ) of the symmetric group of order !, and let

S, =8¢8385..., and Z,=Z¢Z87Z5....

Then [{A}{#}] ® {v} being the spur of the invariant matrix corresponding to (v) of the direct
product of 4™ and 4% it follows that

[ o} =1 208, 2,

Thus if {«}’ denotes an S-function of the characteristic roots of A then

) = oy

and S, = 2y e} = Zx'@ {1} @ {a}.
Similarly Z, = ZxP{ut {6},
1
and thus [l e i} = 20,5, 2,

= L o [ e ] [{a} o (8}

LK@ [ 3] [ o )]

= EK, [ o ] [ o (A

40-2
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To illustrate these theorems {51} ® {2} is evaluated. It is easily established, and will be

proved later that
{n}@{2} = {2n}+{2n—2,2}+{2n—4, 4} +...

to 3(n+1) or $(n+2) terms.

Also {nto{1% = {2n—1,1}+{2n—3, 3} +...

to $(n+1) or in terms.
From theorem (V) we have

[5}{1}] @ {2} = [{5} e (2] [{1} @ {2}] + [{5} @ {1%] [{1} © {17%}]
= [{10}-+ {82} +{64}] {2} + [{91} +{73}+{55}] {1}
= {12} +{11.1}+2{10. 2} + {93} + {921} + 2{84}
+{831}+4{822} 4- {75} 4 {741} + {66} + {651} + {642}
+{10.2}+{10. 12} +{921}+ {913} + {84} + {831}
+{741} 4 {7312} +{6%} 4- {651} 4- {62 1%}.

But  [{5}{1}]]®{2} = [{6}+{51}] ® {2}
= {6} {2} +{6}{51}+{51} {2}
= {12} +{10. 2} + {84} +{6%} +{11.1}+{10.2}
+{10.12}4-{93}+ {921} + {84} 1 {831}
+{75}+ {741} 4-{651}+ {51} ® {2}.

Hence {51} ® {2} = {10.2}+{921} {91} + {84}
+{831}+ {822} {741} +{731%}
+{6%}+ {651} +{642}+{521%}.

This result gives the types of concomitants of degree 2 of a ground form of type {51}.
It is not the easiest method of evaluation but does illustrate the theorems.

APPLICATION TO CONCOMITANTS UNDER RESTRICTED GROUPS OF TRANSFORMATIONS

Suppose now that the group of transformations considered is restricted to those which
leave a certain form or forms invariant. Such a group will be a subgroup of the full linear
group, and hence any simple representation of the full linear group will be a representation,
usually compound, of the subgroup. If {1} denotes an S-function, i.e. a character of the full
linear group, and [x] denotes a character of the subgroup, then an equation of the form

, o 4} = 2K, ,[x]
is obtained.

Correspondingly, a tensor which is simple over the full linear group and of type {1} will
in general be compound over the subgroup, and will have a simple subtensor of type [#]
for each term in the summation.

There will be a simple algebraic form, over the restricted group, for each simple character
[#]. To find the concomitants of such a form of degree z in the coefficients the nth induced
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matrix of the matrix of transformation must be expressed as a direct sum of irreducible
representations. Correspondingly, the equation

[e]®{n} = 2]],
and the ground form of type [#] has a concomitant of degree » and type [v] for each term in
the summation.
For the orthogonal group (Littlewood 1940, p. 240) each character [x#] may be expressed
linearly in terms of S-functions by the formula

(1] =+ 2Z(—-1)*g,, {n}.

The new multiplication may then be effected by means of formulae obtained earlier in
this paper. It is hoped to elaborate this in another paper.

THE CONSTRUCTION OF CONCOMITANTS

The above theory determines the number and type of the concomitants of any given degree
in the coeflicients. When this is known the actual concomitants can be determined by the
following method.

Consider first the concomitants which are linear in each of two ground forms of type {1}
and {u} respectively. Let the tensors of coefficients be respectively 4, and By, where a and
each denote a set of cogredient suffixes.

The above theory shows that the required concomitants are those which correspond to
the S-functions appearing in the product {A}{x}. There exists an isomorphism between the
multiplication of $-functions and the multiplication of irreducible idempotents of the
Frobenius algebra corresponding to different sets of symbols (Littlewood 1940, p. 91).

The tensor 4, corresponds to a substitutional expression of the group of permutations of
the suffixes («), which is an irreducible idempotent of the Frobenius algebra. The same is
true of the tensor B, and the suffixes (£). It follows that the product of the tensors 4, B, is
a complex tensor which has a simple component corresponding to each S-function which
appears in the product {A}{x}.

Hence the concomitants of two simple forms 4,x*, B;##, x* and x# denoting the appro-
priate Clebsch variable tensors, which are linear in the coefficients of each ground form,
are obtained by expressing the product of the tensors 4, B, as a sum of simple tensors and
contracting each simple tensor with the appropriate Clebsch variable tensor.

If {1} is one of the S-functions appearing in the product {A}{x}, then that portion of the
tensor 4, B; which corresponds to the partition (v) can be picked out by multiplying and
contracting with the appropriate Clebsch tensor. The process automatically annihilates
the other components of the tensor.

Let T and 7" be the tableaux corresponding to 4, and By, and let ¢ and ¢’ be the corre-
sponding irreducible idempotents. Let the f® = x§ standard tableaux corresponding to
(v) be T}, T, ..., Ty, and let the irreducible idempotents be N, P, N, P,, ..., N,P,. It is
convenient to take the order NP for the factors instead of the order PN as used by Young.
Then e¢’ has a representation matrix in the subalgebra corresponding to (v) of the Frobenius
algebra, of which the rank r is equal to the coefficient of {v} in {A}{#}. Hence at least r of the
tableaux 7; are such that the expression e¢¢'N, P, differs from zero. These are the tableaux
which give the concomitants of type {v}.
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The rules for the multiplication of S-functions depends on the construction of such tableaux
for which e¢’ NP, differs from zero. Hence, following the rules for the multiplication of the
S-functions {1} {u} we actually write down the tableaux which indicate the appropriate Clebsch variable
tensors to_form the concomitants.

By way of illustration the concomitants are found which are linear in each of two
ground forms in four variables, one being the quadratic g;«'x/, and the other a form of
type {21}, b;;, xix/F.

In writing down our tableaux it is noted that the two suffixes ¢ and j are symmetrical in
a;, and a repeated symbol « is used. Corresponding to the second form, the two symbols
in the same row are symmetrically permuted by the corresponding factor P, and for this
reason p is chosen as the right-hand factor. Hence for these the same symbol £ is used.
The two tableaux are thus

(o @), (ﬁ )
)

It is easier to multiply the second by the first, so f, y, « is taken to be the assigned order of

the symbols. The product of the S-functions corresponds to the set of tableaux

Bhaay (ffa BEa BB
(7/ )’ (ya )’ y , |7«

Hence there are four concomitants which correspond to these tableaux.
In terms of tensors these concomitants can be expressed as

L L oL L
%lasz’.p’zy xPY wbeyrxoe, a, b/,l/m, xPY hoon 2

o o o o
Ay, b/ﬁﬂz}' xBryou xfe 5 Gy, bﬂlﬂzy xBryou gfaot

The symbolic expression for the concomitants is even more obvious from the tableaux.
If the forms are represented by («;4%)% which is denoted by &2, and £.(fy | xy), where f, = ;%'
and (fy | xy) = (fi7;—F;7:) (x'y? —x7y’), then the concomitants are

By | xy) Beo2,  (By | xy) (Be | xy) o
(Bye| xyz) B0y (Bya| xyz) (Po| xy).

It should be noted here that the use of other standard tableaux all lead to a zero result,
while non-standard tableaux lead to results which are linearly dependent on the results
obtained from standard tableaux. In the general case, however, the lattice permutation rule
(Littlewood 1940, p. 94) in the multiplication of S-functions picks out one only from a set
of standard tableaux which lead to equal forms.

Concomitants which are linear in three or more ground forms are treated similarly. The
product of the three or more S-functions is obtained, and the tableau obtained for each
S-function in the product defines the corresponding concomitant.

Returning to the case of two ground forms, before considering the case when these are
identical, so as to give the concomitants of degree 2 in one ground form, examine now the
case when they correspond to the same partition (4).
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In this case the concomitants correspond to the product {1} {1}. Now

W = We2i+e {17,

and the set of concomitants are divided into two portions corresponding to {1} ® {2} and
{1} ® {12}, which are respectively symmetric and antisymmetric in the two ground forms.

Thus considering two quadratics a;; #x7, b;; x'x7, then

212} = {4+ {831} +{2% and {2}e{2} = {4+{2%, {2te {1} = {31}.
Of the three concomitants linear in the two quadratics
@by xixixhxm and  a; by, xFxim
are symmetric in the two ground forms, while

iy by XA
is antisymmetric.

If now the two ground forms are made identical, those concomitants which are anti-
symmetric become equal to zero.

Hence, the concomitants of degree 2 in a single ground form of type {/1} are obtained by selecting from
the tableaux corresponding to the product {A}{A} those tableaux which correspond to concomitants of two
ground forms each of type {A}, subsequently made identical, which are not changed in sign when the
ground forms are interchanged.

Concomitants of degree 3 are obtained as follows. Having obtained the tableaux which
correspond to {A} ® {2} we multiply again by {A}. The resulting S-functions correspond to

[re 2 = e [{2H{1}]
= o [{31+{21}]
= o8t +{}e{21}.

The tableaux corresponding to {A}® {3} give the concomitants of degree 3. The tableaux
corresponding to {1} ® {21} must be rejected as leading to a zero result. '
'The generalization to concomitants of degree 7 is obvious. Corresponding to the equation

n—1}{1} = B} +{n—1, 1}
[(Ge—1]1{} = e +{fofn—1,1}

The chief difficulty is to determine which tableaux should be rejected as belonging to
{{}®{n—1,1}. If the expression for {A}® {n} can be computed by other means, it is only
necessary to pick out the tableaux of the correct types, but here again, if the same S-function
appears both in {1} ® {n} and {A}® {n—1,1}, closer examination is necessary. It is always
possible, however, to find the tableau which yields a non-zero result by proceeding with the
evaluation until it is assured that a non-zero result will be obtained.

On the other hand, if simple methods could be devised by substitutional analysis or other-
wise, of discriminating the tableaux pertaining to {A} ® {n}, then a method of computation
for {A} ® {n} is found. It was hoped that the following method would meet the situation, but
many difficulties arise and it has not so far been possible to overcome them.

it is seen that
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It is quite easy to show that
{n}o{2} = {2n}+{2n—2,2} +{2n—4,4}+... to (n+1) or }(n+2) terms.
For {n}{n} = {2n}+{2n—1, 1} +{2n—2, 2} + ... +{n, n},

and if the tableau corresponding to {2n—7, 7} is considered, it is clear that the interchange
of the set of symbols from the first tableau with the set of symbols from the second will
necessitate 7 interchanges in columns and (z—7) interchanges in the first row. Each column
interchange will contribute a minus sign, and it follows that the tableau will belong to
{n} ® {2} if and only if r is even.

Proceeding to more general cases consider first {21} ® {2}. The product {21}{21} is first
evaluated and the following tableaux obtained:

(aaoc'oc') oo o o (aaa') o o o
b
BB B , B p A B
B’ B
a o 0o o o a o o
pp | [# pa) [£7
’ o’ ’ ' pr o’
a !’ a ﬁ !
B B

Corresponding to each tableau the irreducible idempotent contains one group element
which interchanges the first set of symbols «, «, £ with the second set «’, &', §'. It is reasonable
to suppose that the coefficient will be positive or negative according as the tableau belongs
to {21} ® {2} or {21} ® {12}. Three interchanges are necessary, and if these can be arranged
in rows or columns, the column interchanges will each contribute a minus sign.

On this reasoning the 1st, 4th and 6th tableaux should belong to {21} ® {2}, and the 2nd,
3rd and 5th to {21} ® {12}. The last tableau requires closer attention.

In order to replace

a, o a, o
f, o by fs
‘xl> /)) ’ %, /);
two cyclic permutations of the columns are made, namely, to
a o
af'],
g a

followed by two interchanges in the second and third rows. The corresponding sign would
be positive and it is deduced that

21} o {2} — {42}+ (321} + {319} + 2%,

A check is desirable. The tensor corresponding to {21} in four variables has 20 components.
The number of rows in the second induced matrix will thus be %.20.21 = 210. The orders
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of the tensors on the right are given by {42} = 126, {321} = 64, {313} = 10, {2%} = 10, and

the equation 210 = 126+ 64-+10-+10

provides the check.
However, difficulties very soon arise. Thus for {32} ® {2} there is a tableau

x o o a’\
BB op )
a p

To interchange the ’s and f’s with the a”’s and £"s would appear to'require three column
interchanges and two row interchanges, and the tableau would appear to belong to {32} ® {12}.
On the other hand, there is another tableau obtained by suspending the lattice permutation
rule which yields the same concomitant, namely,

@ aad
B EFE
a o
This, however, would require two column and three row interchanges.
Consideration of the orders of tensors, and other methods for the computation of {A} ® {n},

which will be described in Part III of this paper, show quite definitely that the tableau
really belongs to {32} ® {2}. ‘

PART III. ILLUSTRATIVE EXAMPLES
CONCOMITANT TYPES

Problems concerning the concomitants which are linear in the coeflicients of each of any
given set of ground forms may be taken as effectively solved by the methods of this paper.
This includes the cases of concomitant types and also perpetuants.

As an example we obtain the concomitant types for three cubics in four variables. The
cubics are taken symbolically as (;x%)3, (§;%%)% and (y;4)3.

Corresponding to {3} {3} the tableaux are:

(aaxaf pp), (ocococ,b’,b’), (ocouxﬂ), (acococ)

g B B BB
and for the product {3} {3} {3}

Wawﬂﬂﬂyyﬂ,(aa“ﬂﬁﬂyq, (“aﬂﬂﬂVL ﬁ“aﬂﬂﬂ}

i 77 a
G Gy (B, G
4
aaafpfy (ocococ/)’,b’) caafp (“““/97’7?’)
By ; Brvy )’ Frv ) B A ’
4 ’ 4

Vol. 239. A. 41
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(ocococ,b’yy) aaafyy (ocococﬁy) aaafy
BEY ’ PE s \BByy P pey |
v v

aaafy aoaf aaaf (ocaayyy)
Br ’ Bhyy | EBy | Iy ’
vV 4 1

aaayy xaay aao

FEE P FBE ) FrE

14 vy Yvy

From these tableaux can be written down the 23 concomitants; for example, corre-
sponding to
aoaf
BBy

vy
the concomitant is, symbolically,

(B | xy2)* (a7 | xy) By

As the number of ground forms increases, the number of concomitants increases very
rapidly, and the evaluation of each concomitant becomes impracticable. Generating
functions which give the number of concomitants of each type can, however, be obtained.

A generating function is now sought that will give the number of concomitants of each
type, which are linear in each of p ground forms all of type {1} in n variables.

In virtue of the preceding theory, if

W = 2,

then there will be a concomitant of type {4} for every term {} in the summation.

If {A} is an S-function of the quantities x,, x,, ..., x,, then

x)u+n—t
W=l
and thus I x;\t+n—t Ip _ I x,lstt+n—-t |
e i

Hence the coefficient of #{***~! x{2*"~2 __ x/ in the expansion of
I x§\z+n—-t lp
ol BN
EaE
is equal to the number of concomitants of type {s,, 4y, -, #,}. This is the required generating
function.

Thus the concomitants linear in each of p cubics in three variables have the generating
function

1 1 11 1 1 1 1
¥ ox 11122 x 1 _ Pyt —yix—y)?
A B b B (I

— Z(x,ul-FZy,uﬁl +y/4.+2x/43 +xp2+lym __y,u.+2x,u2+l _x/t.+2y/43_y/42+1x/¢3) .
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Thus, assuming that g, = u, > 3p — i, — s, the number of concomitants of type

{1115 tos 30—ty — o}
is equal to the coefficients of xf1*+2yk*1,

PERPETUANTS

The theory of perpetuants deals with the number of covariant types for a quantic of large
order. The theory shows that if p >r, the number of covariants of weight » which are linear
in each of a set of ¢ n-ary p-ics is independent of p. Young (1924) has given a generating
function for ternary perpetuants.

Since perpetuants are concomitant types, the present methods are immediately applicable.
A generating function is now acquired which is not only simpler than that obtained by Young,
but is also more general, for it gives, besides the covariants, also the mixed concomitants.

The ground forms are of type {#}. Any concomitant which is linear in ¢ ground forms will
be of type {ip—A; —2A,, A;, A,} with ip—A; —2A,>1,>=4,. This is called a concomitant of type
(A1, 4,). The covariants of weight r are given by A; = 1, = r. The fundamental restriction on
the covariants which are regarded as perpetuants is that p>>r. When the result is generalized
to include mixed concomitants, the corresponding restriction is taken to be p=>21,. It will
be shown that, in similarity with the result for perpetuant covariants, the number of con-
comitants of type (4, A,) for p=>4, is independent of .

Suppose that {A}={ip —A, —A,, A;, 4,} is an S-function of the quantities 1, ax, fx. Then'

w1, 1, 1 1, 1, 1
a2, ax, 1 |=| (ax)-M"%t2 (gx)MFl o (gx)te
ﬂ2x2, ﬂx, 1 (ﬂx)ip—/\l—/\2+2, (ﬂx)/\1+l, (ﬂx)/\g

To modulus x#*2, this is congruent to

A1t Ao+ 1( it 19X Ai+1 A
C gt At (Qut1 Az phitlghe
which is independent of p. (hmp—p )

Now
{py | 1, 1, 1 1, 1, 1
a®x?, ax, 1 |={ptx(a—pf) (1—ax)(1—px) = (ax)?*2, oax, 1
p*x%, fx, 1 (Bx)r*2, px, 1

To modulus x#*2 this is congruent to x(a—f). Hence, expanding series formally in
ascending powers of x, it is seen that

{#}=1/[(1—ax) (1—px)]  (modx**1),
{#y=1/[(1—ax) 1—px)]" (modx#*7),
{p¥| L 1, 1

(ax)?, ax, 1
1

(Bx)?, P,

x(a—p "
(l_ax)i—l(lz_lgx)i—l (mod x#+1)

= xMi+tAs+1 (a/\,ﬂ/)mz _/)u,ﬂa)(z) .

Hence the number of concomitants of type (4,,4,) is equal to the coefficient of
Mgt 190

in (@—p) /(1 —ax)=t (1 —fx).

Il

41-2
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Now put x = 1, and the following result is obtained. ‘
The number of concomitants of type {ip — Ay — Ay, A,, Ay} which are linear in each of i ground forms of
type {p} is independent of p provided that p=2A,, and is equal to the coefficient of a’*'f* in series

obtained from (@ —B))(1—a)~! (1 —p)i!

by formal expansion in ascending powers of o and f.

The covariants are obtained by putting A, = A, = r = weight. Therefore the coefficient
of " *1f” must now be picked out.

It is not easy to show that the above series gives the same coeflicient in the general case
as Young’s generating function. However, Young gives the series of coeflicients explicitly
for <8, and these prove to be identical with such explicit forms obtained from the generating
function given here. ,

The generalization to four or more variables is quite straightforward. In four variables
we take S-functions of the four quantities 1, x«, x4, xy, and consider the series of modulus x#*3.
In the same manner the following result is obtained: |

The number of concomitants of type {ip— A, —Ay— A3, Ay, Ay, A5} which are linear in the coefficients
of each of i ground forms of type { p} is independent of p if p = A,, and equal to the coefficient of a1 +2fA21yAs

in the formal expansion of (a—p) (a—7) (B—7)
(=) T (A=) (T—y)!

in ascending powers of a, f, y.
The extension ‘to five or more variables is obvious.

"SIMULTANEOUS CONCOMITANTS OF SEVERAL GROUND FORMS

The problem remains of finding the concomitants which are of degree >1 in the coef-
ficients of one or more of the ground forms. The corresponding formulae in S-functions
involve the symbol ®, and depend on the evaluation of {A}® {n}. The evaluation of this
expression corresponds to the determination of the concomitants of a single ground form of
type {}.

It follows, then, that the problem of finding the simultaneous concomitants of any set of
ground forms is reduced to the separate problems of finding the concomitants of single
ground forms.

This is illustrated with reference to the simultaneous concomitants of a binary quadratic
and a binary cubic. The concomitants of each of these forms, taken separately, are well
known. N ‘

Let the quadratic be Sf=a ==y

and the cubic g=8=p=0

A concomitant which is of degree p in the coefficients of the quadratic, and of degree ¢
in the coeflicients of the cubic, will be said to be of degree (p, g).

Then o (2} = ({23, (o3} = {6+ {42}
{2} @ {4} = {8} +{62}+{4?}, {2} © {5} = {10} + {82} + {64},
{3y @ {2} = {6}+{42}, {3} ® {3} = {9} +{72}+{63},
(3} @ {4} = {12}-+{10. 2} -+ {93} -+ {84} + {67}.
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The only irreducible concomitant of the quadratic is the invariant D of degree (2, 0)
and type {2%}. The irreducible concomitants of the cubic are P, of degree (0,2) and type
{42}, Q of degree (0, 3) and type {63}, and the invariant R of degree (0, 4) and type {62}.

The concomitants of degree (1, 1) correspond to the formula

{2}{3} = {5} +{41}+{32}.
The term {5} corresponds to the product of the ground forms. The other two concomitants

are irreducible and are denoted by T and U respectively.
The concomitants of degree (2, 1) correspond to the formula

{2} o {2}{3} = [{4}+{27}] {3} = {7} +{61}+-2{62} + {43}.
The convention is generally adopted that in such an expression as {2} ® {2} {2} the symbol ®

takes precedence over ordinary multiplication and is evaluated first, just as 2x2+2 is
taken to mean (2 x 2) + 2. The reducible concomitants of degree (2, 1) are

S%, Dg, ST, fU
of types {7}, {52}, {61}, {52}

respectively.

Hence there is one irreducible concomitant of degree (2, 1) which is of type {43} and is
denoted by V.
The concomitants of degree (3, 1) correspond to

{2} @ {3} {3} = [{6}+{42}] {3} = {9} +{81}+-2{72}4-2{63} + {54}.
The reducible concomitants are
fe, fGg, f°T, f:U, DT, DU, fV.

The types are the same as those of the complete set of concomitants of degree (3, 1), so that
clearly there can be no irreducible concomitants of this degree.

It is not necessary to advance further with concomitants of degree (n,1), and degrees of
the form (n, 2) are now proceeded with.

The expression corresponding to the degree (1,2) is

213} @ {2} = {2} [{6}+{42}]
= {8}+{71}+2{62} + {53} +{4?}.

Jjg& JP Ty Ug
of types respectively {8}, {62}, {71}, {62}

There are thus two irreducible concomitants of degree (1,2) which are denoted by 8, ¢,
and of types {53} and {47} respectively.
Investigation of degree (2,2) reveals no irreducible concomitants, but two syzygies.
Th
o 3o {2} {2} o {2} = [{6}-+{42}] [{4}+{2%}]
= {10} 4-{91} 4 3{82} +2{73} + 3{64}.

There are twelve reducible concomitants which correspond to the types

{10} 4+ {91} +4{82} -+ 3{73} + 3{64}.

The reducible concomitants are
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Evidently the four reducible concomitants of type {82}, namely,
gD, f*P, JeU, T*

are connected by a syzygy, and similarly for the three reducible concomitants of type {73},
namely,

TU, gV, /.

In a similar manner for the degree (3, 2) an invariant 7 of type {62} is obtained, for the
degree (1, 3) a concomitant ¥ of type {6, 5}, for the degree (2, 3) a concomitant @ of type
{7, 6}, and for the degree (3, 4) an invariant J of type {92}. Further examination reveals no
other irreducible concomitant and the system

j;g’D’PJ Q’Ri T) U) V’63¢3’¢l’@)13"]

is complete (see Grace & Young 1903, p. 165).

A complete account of the syzygies could also be obtained by these methods, but this will
not be attempted here.

When the system of ground forms is more complicated the work is of course more laborious,
but when the set of concomitants of each ground form singly is known, it is entirely routine
work except for one consideration.

The system of the binary quadratic and cubic considered above has three concomitants
of degree (2, 2) and type {64}. There are three reducible concomitants of this degree and type,
which we assume to give the three concomitants. But a theoretical possibility exists that the
three reducible concomitants are connected by a syzygy, and thus supply only two of the
linearly independent concomitants of this degree and type, the third would then be an
independent irreducible concomitant. There is a theoretical possibility of such an occurrence
for any set of ground forms whenever it is found that, for a given degree and type at least
three linearly independent concomitants and at least three reducible concomitants exist.

It would appear to be a highly improbable occurrence that in this way a syzygy and an
irreducible concomitant of the same degrees and type should exist together, but if the cir-
cumstance did occur, it could not be revealed by an S-functional analysis such as has been
considered. It would be revealed, however, when the actual concomitants were obtained
and examined.

The circumstance does not occur with the binary cubic and quadratic, nor with any
other set of concomitants considered in this paper.

The irreducible concomitants 7, U, V, 0, 4, ¥, of which the types have been found above,
are easily obtained by building the appropriate tableaux, as there is no room for error in
the method of building. They are obtained from the following tableaux:*

s T P 5 S o N
(655#53 EEEN Y £§£WCC$ €§£ﬂééwww)
nylac &aﬁﬁyy)’(ﬂvaaﬂﬁ ’(ﬂvéaaﬁﬁyy'

* Gordan’s iransvectants have similar properties to these tableaux. The chief distinction is perhaps the
systematic use here of Young’s standard tableaux.
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CONCOMITANTS OF A SINGLE GROUND FORM

As it has been shown that problems of simultaneous concomitants of several ground forms
are solvable when the set of concomitants of each individual ground form is known, the
problem of finding the concomitants of a single ground form is now proceeded with.

The corresponding problem in S-functions is the.evaluation of {A} ® {p}.

Some progress can be made simply by the counting of coefficients. The concomitants
and syzygies for a binary cubic may be completely determined in this way. Denote the
cubic by f. ,

The number of terms in a binary form of type {A;,1,} is A, —1,+ 1. Thus

{8} =14
4.5
and hence {3l {2} = 1= 10

The terms of {3} ® {2} are included in the terms of
{313} = {67+ {51} + {42} +{33}.
The concomitants must include the square of the cubic {6} for which {6} = 7, and since also
{51} =5, {42} =3, {33} =1,
it is clear that the only method of obtaining 10 is to take 7+ 3. Thus
(8} {2} — {6} + {42).

4.5.6

Again {3}®{3} = 23

The reducible concomitants are
{9} =10, {72} =6.

20.

From the equation 20 = 10464,
it is deduced that {3} ® {3} = {9} +{72} +{63}.
For degree 4 {8} ® {4} = % = 35

is obtained.
The reducible concomitants are

{12} +{10.2}+{93} {84} = 18+9+7+5
It must follow that -k
{3} ® {4} = {12} 4-{10.2}+ {93} + {84} +{66}.

For the degree 5 it is found that
(8}o {5} — 56,
and the reducible concomitants give
{15} 4+{13.2}+{12.3}+{11.4}+{10. 5} +{96}
=164+12+10+4+8-+6+44
— 56,
and the set is complete.
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For degree 6 {3} ® {6} = 84,
and the reducible concomitants give

{18} +{16.2}+{15.3}+{14.4}+{13.5}+{12.6}+{12. 6} +{10. 8}+{12. 6}
=19+154+13+114+9+7+7-+3+7
= 91.

The discrepancy is clearly caused by a syzygy connecting the three forms of type {12. 6}.

With more complicated ground forms the method soon fails, there being a considerable
choice of types which lead to the same order. The method does, however, provide a very
valuable check on the accuracy of an evaluation of {1} ® {p} obtained by any other method.

This method of counting coefficients depends on the known formulae for the S-functions
of the roots of (x—1)# = 0. Also, formulae are known (Littlewood & Richardson 1933) for
the S-functions of the quantities 1, p, p2, ..., p”. Use can be made of these to obtain another
method for the evaluation of {1} ® {n} which is illustrated with reference to the ternary cubic.

Let A = diag (1, p, p?), and let {1} denote an S-function of the characteristic roots of this
matrix. Then

{8} = 1+p+2p2+2p% +2p* + p3+ 95,

and the characteristic roots of 4™ are the ten constituents of this sum.

Hence {3} ® {3} is the sum of the powers and products of degree 3 of these ten quantities,
and thus

{8}®@{8} = 1+p+3p%+5p3+9p*+12p° + 1996+ 2197 +....

It should be noticed that the expansion of

At 25 (] — pAimAst2) (1 — pli=Aet]) (1 — pha=Ast1)
(1=p*(1=7?)

in ascending powers of p commences with the term p*+2%:, Hence the first term in the
expression for {3} ® {3} must be

{9} = 14 p+20%+ 203+ 3p* 4 3p° + 4p5 +-4p" + ...
The first discrepancy of this series with the series for {3} ® {3} is in the coeflicient of p%, and
the next to be taken is

{/11, AZ) /13} = £

{12} = p2+ 203+ 4pt 455+ 705 +-8p7 + ...
One more term in p? is needed, and thus
{63} = p3+2p*+4p>+ 605+ Tp + ...
The sum coincides with {3} ® {3} up to the terms in p5, but an extra 2p° is required.

The S-functions {A;,A,, A5} corresponding to partitions of 9 for which 4,+21; = 6 are
{522} and {441}. Examination shows that both of these are required and the sum then coin-
cides with {3} ® {3}. Thus

{3} ® {38} = {9} + {72} + {63} + {522} +{441}.

The method is more definite than the counting of terms, but is still not quite specific.
Also it becomes very laborious for higher degrees. '

Before turning to three methods which have proved really effective, mention should be
made, at this point, of the method of first principles.
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Now proceed to find {2%} ® {2} in four variables. Let 4 be a diagonal matrix with diagonal
elements a, f, 7, 8. To find the characteristic roots of A?%] its spur {22} must be expressed as
a sum of monomial symmetric functions.

If {{} = XK, am preyrdm, then K, , is the number of standard Young tableaux that can
be formed corresponding to the partition (A), with the symbols , 4, 7, 8, repeated respectively
Hys Moy fi3s fiy times, no symbol being repeated in the same column (Littlewood 1940, p. 94).

Thus from the tableaux s
a a
G o) G5 ()

it is deduced that {22} = Xa2B%+ Zu2fy + 2apyd

| = (22) +(21%) +2(1%),
where (p, ¢,7,5) denotes the corresponding monomial symmetric function. Each monomial
expression is a characteristic root of 4%%.

The characteristic roots of [4?%]? are the squares and products of degree 2 of the various
terms in the expansion of {22}. Hence {22} ® {2} is the sum of these squares and products
which is equal to

{22 @ {2} = (44) + (431) +2(422) +2(4211) +2(332) +4(3311) +6(3221) + 12(2222).

From the following tableaux is obtained the expression of {42} as a monomial symmetric

function:

Gond Gand (Gavad Garak Garnk (ooah

N N N e N T R 1

Thus {42} = (44) + (431) 4 (422) + (4211) + (332) +2(3311) +2(3221) + 3(2222).
)

Similarly {422} = (422) - (4211) + (332) + (3311) +2(3221) + 6(2222),
{3311} = (3311) + (3221) +2(2222),
{2222} = (2222).
Thus {22} ® {2} = {42} + {427} -+ {3212} + {24}

The method soon becomes laborious. Three much more rapid methods suitable for the
general case {A} ® {n} will be described later.

THE QUADRATIC AND THE LINEAR COMPLEX

The concomitants of a quadratic in any number of variables are easily obtained by picking
out the tableaux which are not changed in sign for the interchange of two ground forms.
The following tableaux represent the concomitants up to degree 4:

(@afp p), (M) (@ap By (aaﬂﬁ) %o
BB vy 1V |BB],
7Y
(@afpyydd), (Mﬁﬂw) aaff xa
) Yy R BB .
) 7Y
80,

Vol. 239. A. 42
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The rule is obvious from the examples. Each pair of symbols must be placed together in
the same row. If a pair of symbols was separated, and these placed in different rows, e.g.

vap b

yyo |,

)
then the pair could be interchanged with another pair, in the example the y’s with the 4’s,
in such a way that one interchange was in a column and one in a row. The interchange
would thus multiply the corresponding expression by — 1, and when the ground forms were
made identical the expression would become zero.

It follows that there is a concomitant of a quadratic corresponding to every partition such

that every part is an even number, and in 7 variables the irreducible set of concomitants

. s 2% 2% ., 2
respectively. :

The case of the linear complex is exactly similar, save for the interchange of rows and
columns. Each pair of symbols must be placed in the same column, e.g.

(oc ﬁl)’ (3 (oc p y)’ o f o

consist of 7 forms of type

’

~

al ﬁ a , a/ ﬁl yl <xl ﬁ/ ,
B y
g va

’

RR ™ R

The set of irreducible concomitants for a linear complex in 2r or 27+ 1 variables consists
of r forms of the respective types

{17, {14, {1%, ..., {17}L
These results have previously been obtained by other methods.
The resemblance between the sets of concomitants for the quadratic and for the linear
complex constitutes a special case of the theorem of conjugates which will be proved later.

THE cUBIC

The three short methods which have been mentioned for the evaluation of {1} ® {n} in
the general case will be illustrated with reference to the cubic.

The first method is a method of obtaining the concomitants in z-+1 variables when the
concomitants in n variables are known. The concomitants of the binary cubic have been
obtained and those of the ternary cubic of degree 2, 3, 4 in the coefficients will now be
obtained. ,

Let A denote a matrix with two rows and columns, and let {1} denote an S-function of its
characteristic roots. Let 4’ denote the direct sum of the matrix 4 and a one-rowed matrix
with element x, and let {A} denote an S-function of its characteristic roots.

Then, generally, A} = {3+ Zg, .l xm,
where g, is the coefficient of {4} in {n} {#}. Thus
{8} = {8} + {2} +x2{1} + 5.
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Hence {3}’ ®{3} = {3} @ 3} +#[(8} © {2 {2}] +#[{(3} {2} © {2+ {3} @ {2} {1}] + ...

The coefficient of x is

[{6} 4 {42}] {2} = {8} +-{71} +{62}+{62} + {53} + {44}.

Since : {8} ® {3} = {9} +{72} + {63},
three of the terms in {3}’ ® {3} must be
{9} +{72}' +{63}".
Then }

{9} = {9} +»{8} + X7} +x3{6}+...,

(2 = (79} {620+ 2007} 4 (014 (53]

{63} = {63} +x[{62}+{53}] +x*[{61}+{52} +{43}] +....
The coefficient of x in the sum is

{8} +{71}+2{62} 4 {53}.
To use up the extra term {44} in {3}’ ® {3} take
{441} = x{44} + x2{43} + x3{42} + ...

Next, the coeflicient of #? in {3} ® {3} is

(3} {4 -+{2 + [{6)+ {42}] {1} = 2(7}+2(61} + 3{52} +-2{43},
and in {9y +{72} +{63} + {441},
is 2{7}+2{61}+ 2{52} -+ 2{43}.

The extra term {52} must be obtained from the S-function {522}'. The counting of coeflicients
shows that our list is now complete and

{8} ® {3} = {9} +{72} + {63} {441} +{522}".
Thus for the degree 4
{8Y o {4} = Bjo {4} ++(3) @ 3} {2}+#°[{3} © BH{1}+ {8} 0 {2} {2/ © {2}] +...
The known terms are
{12y, {10.2}, {93}, {84}, {ee}, {822}, ({741},

which include the concomitants from the binary cubic and also the reducible concomitants.
The coeflicient of ¥ comes to

{11} +{10. 1} +2{92} + 2{83} +2{74} +-{65},

which is the same as that obtained from the known concomitants.

The coefficient of x2 is
2{10}+2{91} 4 4{82} + 4{73} + 4{64},

which exceeds that obtained from the known concomitants by {73}+{64}. Therefore the
two extra terms
{732}’ +{642)
must be taken.
42-2


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

348 D. E. LITTLEWOOD ON

The counting of terms gives 715 for {3} ® {4} and 714 for the known S-functions. There
must remain a single invariant of type {4%}’, and so

(38) ® {4} = {12} +{10. 2} + {93} + {84} + {66} + {822} + {741} + {732}’ + {642}’ +{444}".

Thus progress could be made to four variables by letting 4 denote a three-rowed matrix.

As before {3} = {3} +#{2} + {1} + x5
The coefficient of x in {3}’ ® {4} is

(3 ©{3}{2) = {11} +{10. 1} +2{92} + 2{83} +- {821} + 2{74} +2{731}
+2{722} 4 {65} + 2{641} + 2{632} + 2{542} 4 {443}.

The coefficient of x in the known terms uses up all the expression except {542}. It is deduced
that {3}’ ® {4} contains a term {5421}

Similarly the coefficient of x? indicates a term {6222}’, and the equation

{3} © {4} = {12} +{10. 2}’ {93}’ 4- {84} {66} + {822} {741}’
+{732}' 4 {642} + {444}’ 4 {5421} + {623}

proves to be complete on the counting of terms.

The second method is illustrated in obtaining {3} ® {5}. The method is similar, but the
series is treated from the other end. This gives the solution in one step in any number of
variables. It does, however, require the equation of more coefficients than the first method.

Let 4 denote any matrix, x4 the result of scalar multiplication by x, and 4’ the direct

sum of the unit matrix of order 1, and x4. Denote by {1} and {1}’ S-functions of the character-
istic roots of 4 and A’ respectively. Then if (1) is a partition of p

WY = 2P+ 2ig a0 {p}.
In particular {3} = 14+x{1}+x2{2} +x%({3}.
Hence {3} © {5} = 14+-2{1}+2*[{2} {1} © {2}] +#°[{3}+ {1} {2} + {1} © {3]]
B Zle 2 e 2l H{ o (4] 4.

There is a term in the coeflicient of x# corresponding to each partition of p into not more
than five parts with no part exceeding 3. The term corresponding to (1¢2?3¢) is

@ {a}{Zy o (B} {3) @ {cp a2t
The first term in {3}’ ® {5} is
{15} = 1+x{1}+x2{2} +4%{3}+ ...,

which coincides with the series for two terms. The coefficient of x? in {3}’ ® {5} is, however,
2{2}, and to make use of the extra term {2} it is seen that

(13.2) = 222} + 43 {3} +(21)] +#*[{4} + {31} +{22}] +....

The coefficient of % in {3} ® {5} is
3{38}+{21},

2(3} +{21).

and in {15} +{13.2} is
The next term must therefore be

{12.3} = #3{3}+#*[{4}+{31}] +....
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The coefficient of x* in {3}’ ® {5} is

4{4}+ 2{31} 4 2{2?%},
of which the terms already obtained supply
3{4}+2{31}+{22}.
To provide the extra S-functions it is seen that
(11. 4} = x¥{4}+25[{5}+{41}] +...,
{11.2%} = 422} +x5[{32} +-{221}] +....
The coeflicient of x° is
8121+ 81} o 2+ {2 e 21 {1} +{2H {1} o (3} +-{1} & {5}
= 33312+ {83+ {1} [{(4+{2%]
= 5{5} 1 4{41}+-4{32} +{2%1}.
The known concomitants provide
4{5}+ 3{41} 4 3{32} +{221}.
The extra terms are therefore taken as
{10. 5 +{10.41} +{10. 32} .

This should be sufficient to explain the method. Instead of completing {3} ® {5} by the
use of it, we proceed to the third method. This last method is very rapid and effective, though
it shows certain drawbacks when the degrees become large. Following the method for
consecutive values of the first part, at times a choice of certain alternatives is presented.
Choosing the correct partitions the work develops rapidly to the correct conclusion. But
if a wrong partition is chosen the working goes further and further astray until the error is
apparent. The ability to complete the working is a guarantee that no error or omission has
been made. But with the larger degrees much time can be lost in following false tracks. It
is an advantage to combine this with other methods to give some guidance in the choices
presented. 1

Reverting to the nomenclature of the first method it is seen that

4" = A+x,
so that {4} = {§} +x Xg, ,2{} +higher powers of x,
where g, is the coefficient of {1} in {1}{#}. Then
& @ {n} = (I} © {n} +2{} ® {n—1} Zg, ,,{#} + higher powers of x.

Hence if A {n} = Z{},

so that N @ {n} =2}
=X [{v}+x2g W{,u}—i—higher powers of x].
Equating coefficients of x the following result is obtained:

THEOREM. If A} @ {n} = Z{v},

then Zg lgv{é} = {/1} ® {n - 1} [Eg l,u/\{lu}]’
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Taking {1} = {3}, then Xg, ,,{u} = {2}, and thus if
8@ {5} = 2,

then
28118 = [3t e {4]{2}
= [{12}4-{10. 2} {93} - {84} + {66} + {827} + {741} -+ {732} +- {642} + {43} + {5421} +{625}] {2}
= {14}+{13. 1} +2{12. 2} +2{11. 3} +{11. 21} +3{10. 4} +2{10. 31} +2{10. 22} 4 2{95)
+8{941} +3{932} 4- {9221} 4-2{86} + 2{851} + 5{842} + {8412} - {833} -+ 2{8321} -+ 2{823}
+2{761} 4 3{752} 4- {7512} + 3{743} + 4{7421} 4 {7321} + 2{7322} + {7231} + 2{622} +- {653}
+2{6521} +2{64%} -+ 2{6431} -+ 3{6422} 4 {64212} + {63221} +{62*} + {5231} + {5222}
+{52212}+ 2{5421} + {5432} + {54312} + {54221} -+ {432}.
It is required to pick out the S-functions {} such that Xg,,,{(} is included in the above list.
Clearly {15} {14},
{13.2}—{13.1}+{12.2},
{12.8}>{12.2}+{11.3}.
This exhausts the partitions commencing with 12. Beginning with 11, {11.3}+{11.21}
remains. ‘

There is a choice of either {11.31} or {11.4}+{11.2%. Obviously the latter alternative
must be taken, as both terms represent reducible concomitants,

{11.4}—>{11.3}+{10.4},
{11.2%}—{11.21}+{10.22}.
The remaining partitions commencing with 10 are
2{10. 4}+2{10. 31} +{10.22}.
The reducible concomitants commencing with 10 are
{10.41}>{10.4}+{10. 31} +{941},
{10.32}—>{10.31}+{10.22}+{932},
{10.5} —{10.4}+{95).
These exhaust the 10’s. The 9’s give
{95} +2{941} -+ 2{932} +{9221}.
Reducible concomitants give
2{942} — 2{941}+ 2{932} + 2{842},
{923} - {9221} + {823},

{9 6} — {95} - {86},
and these exhaust the 9’s.

The 8’s give {86} 4 2{851}+ 3{842} + {8412} + {837} + 2(8321} + {823},
Reducible concomitants give

{861} — {86}- {851} {761},
{8421} — {842} + {8412} 4 {8321} - {7421}.
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To use up {82°} then
(8322} — {8321} -+ {82%} - {7322},
and, to use {832}
(843} {842} + {832} 4 {743},

(852} — {851} + {842} +{752}.

and lastly
The 7’s give
{761}+2{752}+ {7512} + 2{743} + 3{7421} 4 {7321} +{732%} + {72%1}.
Commencing with the last term, the only possibility is
{724} > {7231} + {624}

It is not possible to take {7332} to use up {7321}+{732%}, as the three terms {7421} could not
then be successfully combined with other terms. Now linking

{7422} — {7421} + {7322} + {6427},

{7431} {743} + {7421} 4-{7321} {6431},

{7521} — {752} + {7512} 4- {7421} + {6521},
{742} > {743} + {647},

{762} — {761} 4- {752} +{622}.
The 6’s give

{622} {653} + {6521} + {642} -+ {6431} 4 2{6422} + {64212} +{63221}.
To use the first term it is necessary to take
{623} — {622} +{653}.
To use {642}, since {654} would require an extra {653} which is not present, take
{6421} > {642} {6431} +{54%1}.
The two terms {6422} then indicate that
{6522} — {6521} 4- {6422} 4-{522%}
(64221} > (6422} + {64212} +- {63221} + {54221},
There remain the terms
(5231} 4 {52212} + {5421} + {5432} + {54312} 4 {432},
The last term indicates definitely
{5422} — {5421} + {5432} + {432},
and finally {52312} — {5231} +-{5221%} + {54312}.
Thus the complete answer is
{8}o {5} = {15} +{13.2}+{12. 8} +{11.4}+{11.2%}4+-{10.5}+{10.41}+{10. 32}
+{96} 4 2{942} + {923} {861} + {852} +- {843} + {8421} + {8322} + {762}
{7521} + {742} + {7431} 4 {7422} + {724} +- {623} + {6522} -+ {6421} + {64221}
+ {5422} +{5%317}.
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A similar analysis determines

{3}@ {6} = {18} +{16.2}+{15.3}+{14 .4} +{14. 2%+ {13 .5} +{13 .41} +{13. 32}
+2{12.6}+2{12.42}+{12.25}4-{11.61}+2{11 .52} +{11.43}+{11. 421}
+{11.322}4+{10.8}4-{10.71}42{10. 62} +{10. 53} +{10. 521} +2{10. 42}
+{10. 431}+2{10. 422} +{10. 24} 4- {972} 4 2{963} + {9621} + 2{9522} + {9531}
+2{9421} + {9432} + {94221} + {9323} 4 {822} + {8721} + 2{864} {8631}
+2{862%} + {8541} 4 {8532} +- {85312} 4- {85221} +- 2{8422} 4- {84321} -+ {8423}

+ {825} {7231} {7641} + {7632} 4- {76221} 4- {7542} - {75412} + {75321}
+ {74281} + {74221} + {7423} +{6%} - {6242} +- {622°} 4- {647} 4- {65421}
+{65321%} + {64222} + {52431} -+ {5°13}.

The types of the irreducible concomitants of a cubic up to degree 6 are as follows. In six

or more variables all the concomitants exist. If there are less than six variables those parti-
tions only are taken for which the number of parts does not exceed the number of variables.

Degree 2; {42}.

Degree 3; {63}, {522}, {4%1}.

Degree 4; {62}, {732}, {642}, {623}, {5421}, {43}.

Degree 5; {852}, {843}, {8322}, {762}, {7521}, {7431}, {7427}, {724}, {623}, {6522}, {6421},
{64221}, {52312}, {5422}.

Degree 6; {10. 53}, {972}, {9522}, {9531}, {9421}, {9432}, {9323}, {8721}, {864}, {8631},
2{862%}, {8541}, {8532}, {85221}, {8422}, {84321}, {8423}, {825}, {7231}, {7641}, {7632}, {76221},
(7542}, {75417}, {75321}, {742°1}, {74221}, {7423}, {63}, {6242}, {622}, {643}, {65421}, {653212},
{64222}, {5°1°}, {52431},

There are two syzygies of degree 6 in the coefficients, which are of types {12. 6} and {11 . 52}
respectively.

The determination of the actual concomitants cannot yet be made with the same
directness as the determination of the types. However, when the types are known the
number of possible tableaux is strictly limited, and the method of trial and error does not
involve very much labour.

It is sufficient to form sequences of partitions through the consecutive degrees. The
tableaux may then be built by constructing tableaux corresponding to consecutive partitions.
The sequences up to degree 5 are indicated.

The tableau for {42} is unambiguous. Since this is the only irreducible concomitant of
degree 2, the tableaux for each irreducible concomitant of degree 3, namely, those of type
{63}, {522}, {421}, must be built from this.

Of degree 4, the concomitant {62} is obviously built from {63}, the concomitant {623}
from {522}, and the concomitant {43} from {421}. A tableau for the type {732} could be built
from either {63} or {522}. Now consider the first case. The tableau would then be

aaafyyod
BRy
)
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If the corresponding algebraic form is not zero it must be the required concomitant.
Examination is made of the leading coeflicient, i.e. the coefficient of x]y3z2. Let the cubic
be a;, xixixk,

Consider the terms in the leading coeflicient which contain the factor as5,. Symbolically,
this can be either afa,, f3f, 73y, or 028,. Since, considering the last four columns, the
factors g, y,, 0; are present in each expression, the only possibility is «3«,. The co-factor is
obtained from the tableau

e

which is not zero. The tableau represents the required concomitant.
For the concomitant {642} the possibilities are {63} or {52?}. Taking the first alternative,
then
aaafyy
BBy
L)

The corresponding expression must be zero, however, for the interchange of f’s and 4’s
changes the sign. From {522} is obtained

aaafyd

LK)
vy

Now pick out the coefficient of ag5, in the leading coeflicient. The coeflicient of ag05a, is
as obtained from the tableau
_@ﬂﬂyﬁﬁ

o 779
which is not zero.

The coefficient of f, 45/, is the same. These are the only possibilities, and thus the tableau
represents the concomitant.

The concomitant {5421} might be obtained from either {522} or {4?1}. The latter alter-
native gives

aaafd
BEyy
y 0

)

We do not consider the coefficient of a,5, in the leading coefficient, because the corre-
sponding tableau would be of type {531} and there is no such concomitant. Now consider
Q431+

The coefficient of §,8,9, is obtained from the tableau for the concomitant {421}. The
following tableau is obtained for the coefficient of ¢ a2, : \

BB o
—|lrydry
b

Vol. 239. A. 43
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Corresponding to the 3rd column y, must be taken. Transferring the 0 from the 5th to the
3rd column half the terms from the tableau must be taken:

pBop BEEBY
—~lydyy] or +|yydd
b} )

which gives half of the concomitant {421}. The coefficient of f3f, gives a similar result.
Clearly the coeflicient of a3, is not zero, and the tableau gives the required concomitant.

In a similar way the following sequences may be verified as giving correct tableaux for
concomitants. The partition on the left is followed by the types of concomitant of degree one
greater which are obtained from it:

{42); {63}, {421}, {523,
(63}; {732}, {62}.

{522}; {642}, {62%).

{421}; {5421}, {4%}.

(732}; {852}, {8322}, {762}, {7431}.

{642}; {843}, {7422}, {623}, {7521}.

{623); {724,
{4%}; {5422}.

{5421}; {7431}, {6522}, {6421}, {5?317%}.
Thus corresponding to the partition {7521} the sequence is obtained in reverse order:
(7521}, {642}, {522}, {42}
Hence the tableau is xaafyde

fLpod0¢
vy
€
The corresponding concomitant is
(aPye; xyzw) (ofly; 2yz) (203 xy) (BO; xy) (ve; xy) e,
The sequences define all concomitants of the cubic up to degree 5 in the coefficients.
The complete system for the ternary cubic has been obtained by Clebsch & Gordan (1875),
but the above results in more than three variables are believed to be new.

THE QUARTIC

The concomitants are obtained of the quartic* in any number of variables up to degree 5
in the coefficients. The third method described above is used.

Thus (4108} = (T} (61} + {52} + {43,
and {84 >{7},
{62} {61} +{52},
(44} > {43).
Hence (4) @ {2} = {8} -+ {62} +{47}.

* For the ternary quartic a notable but not complete account is given by Noether (19o8).
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Next  {4}o{2}{3} = [{8}+{62} +{4"}] {3}
= {11}4{10. 1} +2{92} +2{83} + {821} 4 2{74} + {731}
+ {722} 4-{65} 1 2{641} + {632} + {542} 4- {423},
and {12} {11},
{10.2} >{10.1}+{92},
{93} {92} + {83},
{84} — {83} +{74},
{822} — {821} + {722},
{741} - {74} 4-{731} {641},
{642} — {641} {632} + {542},
Hence {43} —{423}.
{4} © {3} = {12} +{10. 2} + {93} + {84} + {822} + {741} + {642} 4 {4%} + {6%}.
For {4} ® {3}{3} then
{16} +{14.1}+2{18. 2} +3{12. 3} +-{12. 21} +3{11 .4} +2{11. 31} +2{11. 2%}
+3{10.5}+4{10.41}+3{10. 32} +{10.221}+ 3{96} + 3{951} + 5{942} + {941%}
+{9321} {9221} + {87} + 3{861} + 4{852} + 3{843} 4 3{8421} 4 {8322} + {721}
+3{762}+ {7612} + 2{753} + 2{7521} -+ 3{744} - 2{7431} + {742%} 4 2{623} + {6221}
+{654}+ {6531} + {6522} + 2{6421} + {6432} 4 {5422} + {4°3}.

From these

{40 {4} = {16}+{14.2}+{13.3}+2{12.4}+{12.22} +{11 .41} +{11. 32} +2{10. 6}
+{10.51}+2{10.42}+{10. 2%} + {961} +{952} 4 {943} + {9421} + {8%}
+2{862} -+ {8422} 4- {8521} + 2{842} + {7212} + {763} + {7531} 4 {7421} + {624}
+{6222} + {6422} 4 {44}. :

In a similar manner

{4} © {6} = {20} +{18 .2} +{17.3}+2{16 .4} +{16. 2% +{15.5}+{15.41}+{15. 32}
+2{14.6}+{14.51}+3{14 .42} +{14. 2%} +{13.7}+2{13. 61} +2{13 . 52}
+2{13.43}+{13.421}+{13.32%}+2{12.8}+{12.71}+4{12. 62} +{12. 53}
+2{12.521}+3{12.42}4+-{12.431} 4 2{12.42%}+{12.24}4-{11. 81}
+2{11.72}+{11.71% +3{11 . 63} +2{11. 621} +{11. 54} +2{11. 531}
+2{11.52%+2{11.421}+{11.432}4+{11.4221}+{102}+2{10. 82} +2{10. 73}
+2{10.721}+4{10. 64} +2{10. 631} +3{10. 62%}+2{10. 541} +{10. 532}
+{10.531%}+{10. 5221} 4 3{10. 422} + {10 . 423} + {983} + {9821} {974}
+2{9731}+ {9722} 4+ {97212} + {965} + 3{9641} + 2{9632} + {96221 } + 2{9542}
+{9541%} + {95321} 4 {9423} 4+ {94221} + 2{84°} + {84222} -+ {86321} + {8623}
+2{86%} + {8651} + 3{8642} 1 2{8741} - {8543} + {85421} + {8732} 4 {85212}
+{87312} +2{824} -+ 2{8222} + {72412} {7251} + {7232} +- {75431} + {74%1}
+{7652} 4+ {76421} + {7643} -+ {6242} 4- {62422} + {632} + {6452} -+ {4°}.

43-2
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The irreducible concomitants are of type

Degree 2; {62}, {4%}.

Degree 3; {93}, {82%}, {741}, {6%}, {642}, {4}.

Degree 4; {11.32}, {10.51}, {10. 42}, {10. 2%}, {961}, {952}, {943}, {9421}, 2{862}, {8427},
{8521}, {842}, {7212}, {763}, {7531}, {7421}, {624}, {6227}, {6422}, {4%}.

Degree 5; {13.52}, {13.43}, {13.32%, {12.71}, {12.53}, {12.521}, {12.4%}, {12.431},
{12.42%, {12.2%}, 2{11.72}, 2{11.63}, 2{11.621}, {11.54}, {11.531}, 2{11.52%}, {11.421},
{11.432}, {11.42%1}, {10.82}, 2{10.73}, 2{10.721}, 2{10.64}, 2{10.631}, 2{10.62%},
2{10.541}, {10.532}, {10.531%}, {10.52%1}, 2{10.4%2}, {10.42%}, {983}, {9821}, {974},
2{9731}, {9722}, {97212}, {965}, 3{9641}, 2{9632}, {96221}, {843}, {84222}, {86321}, {862°},
2{86%}, {8651}, 3{8642}, 2{8741}, {8543}, {85421}, {8732}, {85212}, {87312}, {824}, 2{822%},
{75431}, {1431}, {7652}, {76421}, {7643}, {72412}, {7251}, {7232}, {6242}, {62422}, {62}, {6472},

{4°).

The sequences which enable the concomitants up to degree 4 to be constructed are

{62}; {93}, {822}, {62}, {642}, {741}.
(42); ().
{93}; {11.32}, {10. 51}, {952}.
{82%}; {10.42}, {10. 23}, {9421}.
{741}; {961}, {943}, {7212}, {862}.
{6%); {862}, {6%4}.
{642} ; {8422}, {842}, {6222}, {6422}, {763}, {8521}, {7531}, {7421},
)3 {49,
These sequences are not always unique, e.g. a concomitant corresponding to {862} could

be obtained from either {82%} or {642}, but these concomitants would be the same as that
obtained from {6%}.

THE QUADRATIC COMPLEX

The types of concomitants up to degree 4 in the coefficients of a quadratic complex in
any number of variables are now obtained.
Using the third method described above it is seen that, if

2% e{2} = Z{},
2521} = Zgyaly = {431+ {4213+ {31} + {325+ {3217} +-{2°1}.
Starting with the reducible concomitant
{47 > {43},

{422} > {421} 4 {322},
{3212} {321} {3212},
{24} - {2°1}.
Thus {22 ® {2} = {42} + {422} + {8212} +-{24}.

then

the only possibilities are then
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Evaluating {2%} ® {3} it is found that

{28 @ {2}{21} = {65} + {641} +{5°1} +- {542} 4 {5412} + {4221} }- {632} + {6221} + {542}
+{53% +2{5321} 4 {52%} + {52212} + {423} + {4221} + {4321} + {432%}
+ {43212} + {42°1}+ {5412} + {56321} 4+ {56315} 4 {4221} 4- {4*1°} + {4331}
+{432%} +2{4321%} + {4314} + {352} + {3%12} 4- {32221} + {32213} + {4327}
+{42%1}+ {32221} + {324} + {32%12} 4-{251}.

The reducible concomitants give

{6°} {65},
{642} > {641} + {632} + {542},
{6212} > {521} + {5412},
{4292} 5 (4291} 1 {4322},

To utilize the other S-functions, take

{623} — {6221} + {52},
{5321} > {532} {5321} + {4321},
{5421} - {542} + {5412} + {5321} + {4221},
{53212}—>{5321}+{5313}+{52212}+{43212},
{£} {473},
{4222} > {4221} 4 {4327},
{4214} — {4213} 4+ {4314},
{43212} - {4321} + {43212} 4-{3°12},
{43221} — {4327} - {43217} +{42°1}4- {32221},
{424 — {4231} + {324},
{34} >{3%2},
{322212} - {32221} + {32213} 4- {32312},
{26} —{2%1}.
Hence
{22} © {3} = {62} + {642} {625} + {5°12} 4 {5421} 4 {5321} + {53212} + {43} - 2{422%
+ {4214} + {43212} + {43221} 4- {424} 4 {34} + {322212} - {26).

To evaluate {22} ® {4} it is easier to use the second method. Using the same nomenclature
as previously
{1} = {1}+=,
and {27 = {2} +x{21} +{22}.
Then  {2%)' @ {4} = %2} © {4} +47{2} ® {3} {21} +x°[{2} © {3} {22+ {2} © {2} 21} ® {2}] +-....

The coefficient of 8 is
{2} {4} = {8} +{62}+ {47} + {423} + {2}.


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

358 D. E. LITTLEWOOD ON
The corresponding terms in {22} ® {4} are
{82} + {862} + {842} -+ {8422} 4 {824}.
The coeflicient of x7 is
2} o {3}{21} = [{6}+{42}+{2%}] {21}
= {81} + {72} + {712} - {621} + {63} + {621} + {54} 1- {531} +{521%}
+ {531} + {527} + {421} + {432} + {4312} 4 {4221} + {432} -+ {4221}
+{3%21}+{32%} + {32212} 4-{21}.
The S-functions already obtained account for
{81} + {72} + {63} +- {621} + {54} + {421} + {522} + {432} + {4221} + {32%} + {2*1}.
The remaining terms give the S-functions with 7 as the initial part, namely
(7212} {7621} +2{7531)' {73212} + {7432} + {74312} 4- {74221}’ + {73221} +{732212)".

The coeflicient of x8 is

2o {3123+ {2} e (2} {21} o {2}

= [{6}+ {421+ 2] 22+ [{4}+ (23] [{42} + (321} + 29} + {31%)]

= {82} + {73} + {721} + {64} 1+ {631} 4 {622} -+ {541} + {532} 4 {422} + {721} 4 {631}
+{62%} -+ {6212} + {532} + {5312} + {5221} + {4321} + {62%} + {5221 } + {423} + {715}
+ {6212} + {614} + {5312} 4 {521%} 4 {4313} 4 {64} + {631} + {62%} + {541} } {532}
+{5312} 4 {5221} 4 {422} + {4321} 4 {4231} + {541} + {532} + {5317} 4 {5221 } + {4%2}
+ {4212} + {432} 4- {4321} + {4321} 4 {425} + {42212} - {422} 4 {4317} 4- {425} + {32212}
+{8231}4-{2°} -+ {82°1} 4+ {82212} 4- {331} + {5312} + {5213} - {4321} + {4313} + {42212}
+ {4214} 4 {331} + {32212} + {32213} + {82} + {721} + {622} + {64} + {631} + {622} + {541}
+{532}+ {5312} + {5221} + {422} + {4321} -+ {42} 4 {422} + {4321} + {42%} + {32212}
+{32%1}+{2°}.

Of these the known S-functions account for

{82} + {73} + {721} 4- {64} + {631} +{62%} + {541} + {532} {422} - {721} + {631} + {62%}
+{621%} + {532} 1+ {5312} + {5221} + {56221 } + {71°} + {5312} + {631} + {622} 4- {422}
+ {4321} + {42%} + {541} + {532} 4 {5312} + {4212} - {437} + {4321} -+ {42212} + {4321}
1 {423} + {3231} + {4321} + {4313} + {42212} + {331} 4 {32212} + {32213} -+ {82} + {721}
+ {64} + {631} 4 {541} + {532} + {422} + {4321} - {423} + {32212} + {32°1} + {25},
The remaining terms give the S-functions with initial part 6, namely,
{6214} + {624} 4 3{622%} 4 {65213} + {6541} + {6532} + 2{6531%} + 2{65221} -+ 3{6422}
+3{64321} + 3{642%} + 2{6431%} + {6421%} +{63°1} + 2{63212} -+ {632°1} -+ {62°].
Now by reason of the theorem of conjugates which will be proved later, since {2%} is a

self-conjugate partition of an even number, for every S-function in {22} ® {4} the S-function
corresponding to the conjugate partition will also appear. Thus another 31 terms are obtained
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in {22} ® {4}. There remain only the partitions with <5 parts in which each part <5. These
are easily obtained by the third method described above which also provides a check on
the terms already obtained. If

2% el = 2,

then 2% o {3}{21} = Zig, n{u}-
Thus

{22} ® {4} = {87} + {862} {847} 4- {8422} 4- {824} 4- {7212} + {7621} + 2{7531} 4- {7432}
+ {74312+ {74221} 4 {73221} + {732212} + {624} + 3{622%} + {621} + {6541}
+{6532} {65213} - 2{6531%} + 2{65221 } + 3{6422} + 3{64321} + 3{6425}
+2{64313}+ {64214} 4- {6331} +2{63212} 4 {63231} + {625} + {5216}
+{53221%} +{54221%} + {532%12} + {54314} 4 {54231} + 2{532221} + {54231}
+2{5%2212} 4- 3{54321%} + {54213} + 3{5232} 4- 2{5241%} -+ 2{52321} + 2{54321}
+2{54%21}+ 2{5432%} + 2{53%2} + 2{4%} + 3{432?} 4- 3{423212} + {42321}
-+ {43321} + 3{422%} + {42321} + 2{432221?} 1 {43241} - {426} + {422214}
+ {3422} 1 {3416} 4- {32241%} + {28}.

THE THEOREM OF CONJUGATES

The types of concomitant of a quadratic and those of a linear complex show a notable
resemblance. Thus there is a concomitant of a quadratic corresponding to every partition
into parts of even magnitude only; there is a concomitant of a linear complex corresponding
to every partition in which each part is repeated an even number of times.

This resemblance breaks down completely for the cubic and the conjugate form of type
{1%}. The concomitants of degree 2 of a cubic are of type {6} and {42}; of a form of type {13},
they are of type {2°} and {21%}. But the resemblance reappears for the quartic and the con-
jugate form of type {1*}. Of degree 2, the types of concomitant of a quartic are {8}, {62}, {42},
and the types of concomitant of a form of type {1} are {18}, {221%}, {2%}. The resemblance
continues for higher degrees in the coefficients.

These resemblances prove to be particular cases of a very remarkable theorem of conjugates
which proves incidentally that for each concomitant of type {4} of a ground form of type {1},
there is a concomitant of type {#} of a ground form of type {1}, provided that {} is a partition
of an even number. The sign ~ denotes that the conjugate partition is taken.

The full theorem is more general than this, and is as follows:

The theorem of conjugates:

Let (L) be a partition of p, and let |
o l{n=2p;
Mo {u =2}

N e{a = 2P} |
The proofis as follows. Let S, denote the sum of the rth powers of the characteristic roots
of a matrix 4, and let Z, denote the sum of the rth powers of the characteristic roots of A®,

Then if p is even
and if p is odd
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Then Z, is the spur of 4™ which is
1
Zi =W =5 20"
where y{V is the characteristic corresponding to (1) of the class p = (1222 3¢...) of the sym-
metric group of order p!, and S, = §45355 ... (Littlewood 1940, p. 86).
Now the characteristic roots of A4 are products of powers of the characteristic roots of 4,

and consequently Z, can be obtained from the expression for Z, by replacing each character-
istic root of 4 by its rth power, which implies that §, must be replaced by §,,. Thus

1
Z, = 5 ZN0.8.88,55, ...

If (4) is a partition of ¢, and p’ denotes the class (1#°2%°3¢...) of the symmetric group of
order ¢!, then

1 p———
Beo{u =2} = azxj,fﬁsz 575 ...
To obtain 2{p} from this expression each §, must be replaced by (—1)7*1S,. Thus

Z, :}}!zx;,»s?sgg
1

is replaced by EZ(—I)”"*'"X;;‘)S‘{S’Z’Sg
=T,
where 7, denotes the sum of the rth powers of the characteristic roots of 4.
1

Also Z, =p—!Zxﬁ;"S‘2‘SﬁSg
. 1 \
is replaced by FZ( —1)atbiat y(08e 8886 ...

Since a+2b+3c+4d+... = p,
then (___1)a+c+e+... — (___l)p.

Hence Z, is replaced by
l| (—1)2 Z(—1)b+dto g SaSHSE
= (—=1)¢T,.
Similarly Z,, ., is replaced by 7,,., and Z,, by (—1)? T,,.
If p is even the same result is obtained if {A} is replaced by {1}, i.e.
o=},
but if p is odd allowance must be made for the factor (—1)# by replacing {4} by {#}, i.e.
Mo (g =2}
This theorem has a direct application to the concomitants of a single ground form only
if (1) is the partition of an even number, for if

e {nt =20},
then {71} ® {n} = 2{7}.
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Thus since | |
{4} 0 {3} = {12} +{10. 2} + {938} + {84} + {822} + {741} 4 {62} {642} +-{4°}
it is deduced that

{19 @ {8} = {13+ {2215} 4 {281} - {2414 + {321} + {32°1%} + {26} 4- {32217} + (3%},

and from the concomitant of a quartic may be deduced the concomitant of a ground form
of type {14}.

By an application of Young’s methods of substitutional analysis, replacing symmetric
groups by negative symmetric groups and vice versa, it may be shown that the interchange
of rows and columns in any tableau giving a concomitant of a ground form of type {1} gives
the correct tableau for the corresponding concomitant of a ground form of type {1}. Thus
the actual concomitant of a ground form of type {1*} may be deduced from those of the
quartic.

When (A) is the partition of an odd number, e.g. for the cubic, the method breaks down.
The set of conjugate S-functions of the expansion of {3} ® {n} is not {13} ® {n} but {13} ® {17}.
This gives, not the concomitant of a single ground form of type {1°}, but the alternating
concomitant types of a set of ground forms of type {13}. These will be discussed in the next
section.

Returning to the case when (4) is the partition of an even number, so that a correspondence
is obtained between the concomitant of two ground forms of type {A} and {1} respectively,
two points should be noticed.

First, the theorem deals with concomitants in any number of variables. Thus suppose
that the concomitants of a ground form of type {31} are known in five variables only. Then
taking conjugates all the concomitants of a ground form of type {21%} are not obtained, but
only those for which the first part does not exceed 5.

Secondly, it is the complete set of concomitants of a given degree that is involved, and
not the irreducible set. The conjugate of a reducible concomitant may be irreducible, and
vice versa. Thus

(o {2} = {8} +{62}+{47, {1%e{2}={1}+{2219+{2%

In the first case it is the concomitant of type {8} which is reducible; in the second case, not
{18} but {24} gives the reducible concomitant.

This difference in reducibility is a distinct aid in the determination of concomitants, for
if {A} is the partition of an even number, in determining {A} ® {x}, not only those terms corre-
sponding to reducible concomitants can be written down immediately, but also those terms
which would be reducible if the conjugates were taken.

Thus, in determining {4} ® {5}, the following terms could be written down immediately
as they correspond to reducible terms in {14} ® {5}:

{13.43}, {11.432}, {10.541}, {10.42%}, {9641}, {9542}, {9423}, {94221}, {8642},
{84222}, {85421}, {72412}, {7643}, {75431}, {7431}, {6242}, {62422}, {6432}, {4°}.

This suggests a new problem. We consider a single ground form of type {A} where () is
a partition of an even number. It is known that the irreducible concomitants in a given

Vol. 239. A. 44
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number of variables are finite in number, but if the number of variables is made unlimited
the number of concomitants becomes infinite, as is obvious even for the simple case of the
quadratic. But if the definition of reducibility is revised so that a concomitant is considered
reducible either if it is reducible in the old sense, or if the conjugate concomitant of the
conjugate ground form is reducible, will the number of irreducible concomitants then
become finite ?

The answer is yes for the quadratic and for the linear complex. The ground form is then
the only irreducible concomitant.

For the next simplest ground form, the quartic, the answer is, no. Thus the following
infinite sequence of irreducible concomitants still exist:

{4}, {62}, {827, {10.23}, {12.2%, {14.26},

ALTERNATING CONCOMITANT TYPES

The concomitant types, that is, the concomitants which are linear in the coeflicients of
each of p ground forms, each of type {1}, are much more numerous than the concomitants
of degree p in a single ground form of type {A}.

Sometimes it is known, however, that a certain concomitant linear in each of p ground
forms each of type {1} is such that each ground form plays an equivalent role, and the
ground forms are not grouped together in any way. Such a concomitant must either be
symmetric in the ground forms, or else antisymmetric. Since it is the vanishing of the
concomitant which is usually considered, a change in sign of the concomitant when two
ground forms are interchanged is not significant, and the antisymmetric case must be
considered.

A concomitant which is symmetric in the p ground forms is of the same type as a con-
comitant of degree p in a single ground form, to which it becomes equal when the ground
forms are made identical.

The remaining case is of some interest, namely, the case of concomitant types which are
antisymmetric in the ground forms. These are called alternating concomitant types.

The alternating concomitant types of a set of p ground forms, each of type {1}, correspond
to the terms in the expansion of

e ()

For quadratics use is made of a certain generating function (Littlewood 1940, p. 238
(11-9;3)) to obtain the alternating concomitant types.
Let {1} denote an S-function of the quantities «, 4, ¥, 4, .... Then

(2} = o2+ Xup,

and thus {2} ® {1#} is the sum of products of p different terms taken from the right-hand side
of this equation.
Thus {2} ® {1?} is the coeflicient of p? in the expansion of

I1(1—a2p) I1(1 —afyp).
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This is equal to (Littlewood 1940, p. 238 (11-9; 3))
1 +2{7} (__p)w’

where (y) is a partition of 2w, and the summation is with respect to all partitions (y) which in
Frobenius’s nomenclature is in one of the forms

(r+1) (H—l, s+1) (r+1, s+1, t+1)
r b b b

7, s 7, S, ¢
Thus
II(1—a2p) II(1 —afp) = 1 — {2} p-+ {31} p2— [{412}-+ {33 p3+ [{B1%} + {431}] p*
. —[{614} + {5312+ {422}] p>+....
ence

TureoreM. There is an alternating concomitant type of quadratics corresponding to every partition
which tn Frobenius’s nomenclature is in one of the forms

(r—H) (r+l, s—|—1) (r—l—l, s+1, t+1)
r b bl b

7, s 7, S, ¢
The theorem of conjugates enables us to deduce immediately the theorem for linear
complexes.
TuEOREM. There is an alternating concomitant type for linear complexes corresponding to every
partition which in Frobenius’s nomenclature is in one of the forms

L)

The actual concomitants can be obtained by building tableaux for consecutive degrees
in the coefficients, such that each tableau is of the required type. Thus for the alternating
invariant of 10 quaternary quadrics the tableau is

aaflyd
BEENE
ynAAp
0Cuvy

The product of five determinants corresponding to this tableau gives only one term in
the required invariant. With concomitants of a single ground form one term is sufficient,
for the fact that the ground forms are made identical is equivalent to the operation of the
symmetric group of permutations on the ground forms. If instead of a concomitant of
degree 7 in one ground form we sought a concomitant which was linear in each of n ground
forms and symmetric in these ground forms, it would be necessary to operate with the
symmetric group of permutations on these ground forms. ‘

Similarly, to obtain the alternating invariant of 10 quaternary quadrics we must operate
on the term given above with the negative symmetric group on the 10 quadrics.

Actually the 10! terms so obtained are not all required, as the given term already has the
alternating property with respect to many permutations.

Turnbull & Young (1926) have shown that the alternating invariant of 10 quadrics can
be expressed as the sum, with alternating signs, of 240 terms similar to that given above and
obtainable from it by permutations of the quadrics.

(r, s) (r, S, t)
r+1, s+1)° r+1, s+1, t+1)°

44-2
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The alternating concomitant types for the general ground form of type {A} may be found
by any of the methods given above for the concomitants of a single ground form. In par-
ticular, the third method may be employed. Illustration is made with the quartic.

Thus {4} {3} = {7} +{61} 4 {52} +{43}.
{8} is not chosen as this belongs to {4} ® {2}. Instead choice is made of
{T1}>{73+{61}, {563} —>{52}+{43}.

Hence \ (e 12 — (71} +{53).
Next

{4yo (17 {3} = [{71}+{53}] {3} -
= {10.1}4-{92} + {912} 4 2{83} + {821} +2{74} + 2{731} + {65} + {641}
+{632}+ {521} + {542} + {532}
Thence {10.1%}—>{10.1}4{91%},
{98} — {92} + {83},
(831} {83} + {821} + {731},
{715} > {74} 4-{65},
(741} {74} 4 {731} + {641},
{633} — {632} + {533},
{552} - {551} +{542}.
Hence {4} {13} = {10. 12} -+ {93} 4 {831} + {75} + {741} + {632} ++ {522}

The application of alternating concomitant types is illustrated with one very simple
example.

'The equation to a line in three dimensions (four variables) is that of a linear complex {1%}
whose second degree invariant {14} is zero. Given three non-intersecting lines, the set of
lines which intersect these three lines generate a quadric, the equation to which must be
the vanishing of a concomitant of the three lines.

The concomitant must be either alternating or symmetric. The symmetric case is ruled
out, for the symmetric concomitants are of type {p?, ¢} and do not include a quadric. It is
therefore concluded that it is an alternating concomitant type.

Then (1%} @ {15} = {319} + {25},

Clearly the first concomitant represents the point equation and the second concomitant
the tangential equation of the given quadric.
The corresponding tableaux are

apy a f
o ay
g gy
yl

I wish to express my thanks to Professor H. W. Turnbull for his very helpful advice,
particularly concerning the classical aspects of invariant theory and on terminology, and
also for drawing my attention to slips and errors in the script.
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